

Intention-Aware Routing to Minimise Delays at Electric Vehicle Charging Stations

Mathijs M. de Weerdt*, Enrico H. Gerding, Sebastian Stein, Valentin Robu, and Nicholas R. Jennings

*Delft University of Technology, Netherlands School of Electronics and Computer Science, University of Southampton *m.m.deweerdt@tudelft.nl, {eg,ss2,vr2,nrj}@ecs.soton.ac.uk

Electric Vehicles

Electric vehicles (EVs) reduce: - CO₂ emissions and - dependence on fossil fuels.

However, EVs have a limited range (typically <100 miles).

Public charging stations are scarce and charging is slow (at least 15-30

Our Solution: Intention-Aware Routing System (IARS)

minutes), leading to potentially long queues and delays.

Share routing policy (=intention)

Routing Problem

Traffic network is modelled as a graph:

Edges represent roads...

... or charging stations.

Travel and waiting times are probabilistic and depend on time of day: $P(\Delta t | e, t_c)$

Optimal policy maximises user's expected utility E(U(t,s)).

t: time of arrival at destination **s**: state of charge at destination

Developed two algorithms to solve this, based on dynamic programming and AO*.

Waiting Time Distributions at Charging Stations

Step 1: Compute probability $P_i^{arr}(e,t)$ of vehicle *i* arriving at station *e* at time *t*, using historic information or intentions, when available.

Step 2: Approximate waiting time distribution by sampling from $P_i^{arr}(e,t)$ and simulating waiting times using a queueing model.

Conclusions

- Proposed new routing model for the EV charging setting.
- This incorporates intentions by:
 - Combining known EV policies with historic

Benchmarks

Min(False): Shortest path *without* considering historical waiting times.

Min(True): Shortest path considering historical waiting times.

Logit(*λ***,True/False):** As Min(True/False), but with random deviations (using logit function with parameter λ).

EVs using IARS

IARS: Intention-Aware Routing System

- information.
- Using a principled approach for approximating waiting time distributions based on a queueing model
- Evaluation shows significant reduction in overall journey time, compared to approaches using only historic information.
- IARS benefits all agents, even those not using the system.

Future Work

- Evaluation on real road networks and traffic data.
- Comparison to reservation-based systems.
- More advanced queueing models, including variable charging times.

