

Simultaneous Search and Rescue

Zoltán Beck zb1f12@ecs.soton.ac.uk

Agents, Interaction, and Complexity Research Group, School of Electronics and Computer Science University of Southampton

Agile Collaboration

Create agile collaboration between autonomous agents during a search and rescue scenario.

As **autonomous vehicles** are present at disaster sites, how can we achieve an efficient collaboration between different vehicles with different capabilities during a **complex** task as **search and rescue**?

Collaboration Model

The agents perform search and rescue:

- Search agents explore areas by taking aerial images
- Rescue agents identify incidents at locations of interest
- Agents **share** their knowledge of the area as a map of incident density
- This map is **updated** by the actions of the agents
- The agent groups use the map to create plans
- The key of the collaboration is **creating** these **plans together**

Levels of Collaboration

Search Rescue

For performance comparison, we have defined four levels of collaboration based on the planning of the two agent groups:

- 1. Independent
- Search affects rescue
- Rescue affects Search

Simulation Results

Real Incident Data

Disaster assessment data from real disasters:

- Haiti earthquake, 2010
 - small area (1.1 km) of one sector
 - large incident density
- Ajka Alumina Plant industrial spill, 2010
 - large area (11 km)

Future Work Intelligent method for joint planning Deployment on real platforms Monte Carlo Tree Search SSSSSSSS

