

Mechanism Design for Ridesharing

Dengji Zhao, Sarvapali D. Ramchurn, Enrico H. Gerding, David Parkes, and Nicholas R. Jennings

Agents, Interaction, and Complexity Research Group / Artificial Intelligence Research Group School of Electronics and Computer Science / School of Engineering and Applied Science University of Southampton / Harvard University

Ridesharing Market

- More than 600 ride-matching services in US in 2011.
- European ridesharing platform providers Carpooling.com and BlaBlaCar claimed more than 6 million users in 2012.
- BlaBlaCar arranges 400,000 rides a month, equal to 1,000 French high-speed trains.

However,

- Australia (Queensland) will end ridesharing lanes.
- The average car carries just 1.6 people.

Challenges and Aims

Challenges of the existing ridesharing services:

- Flexibility, reliability, safety and privacy,
- Complicated ride-matching and ride arrangement, e.g. commuters have to search/contact others to arrange the sharing.
- No free market competition, e.g. commuters have to setup the prices by themselves without the knowledge of the market.

Aims of this research:

- Automated ride-matching/ride arrangement,
- Automated price setting,
- Incentivize participation and prevent manipulations.

Features of auction based ridesharing:

- 1. Commuters only need to report/post their trips, no additional ride arrangement
- 2. The system consists of
 - an allocation mechanism:
 - computes the optimal allocation, e.g. minimizing travel cost
 - a payment/price mechanism:
 - calculates a payment for each commuter, which maximizes commuters' utility/profit

Challenges of auction based ridesharing:

- 1. Incentivize participation and prevent manipulation
 - the system should maximize commuters' utility/profit such that they are not incentivized to manipulate the system in order to gain more.
- 2. Deficit control
 - well-known mechanism VCG gives the optimal outcome for all commuters, but produces a very large deficit to the system.
- 3. Computational complexity
 - the automated ride-matching and the payment computation is very difficult.

Solutions

- 1. Incentivize participation and prevent manipulation
 - Vickrey–Clarke–Groves (VCG) based mechanisms [1,2].
- 2. Deficit control
 - trade reduction [2,3], adapt fixed/reserve prices [1].
- 3. Computational complexity
 - limit the outcome space [1] and empirical studies [2,4].

[1] Zhao, D.; Zhang, D.; Gerding, E. H.; Sakurai, Y.; and Yokoo, M. 2014. Incentives in ridesharing with deficit control. In Proceedings of AAMAS'14.

[2] Parkes, D. C.; Kalagnanam, J.; and Eso, M. 2001. Achieving budget-balance with vickrey-based payment schemes in exchanges. IJCAI'01.

[3] McAfee, R. P. 1992. A dominant strategy double auction. Journal of Economic Theory 56(2). [4] Agatz, N. A.; Erera, A. L.; Savelsbergh, M. W.; and Wang, X. 2011. Dynamic ride-sharing: A simulation study in metro Atlanta. Transportation Research Part B: Methodological 45(9).

