

Intention-Aware Routing of Electric Vehicles

Mathijs M. de Weerdt*, Enrico H. Gerding, Sebastian Stein, Valentin Robu, and Nicholas R. Jennings

*Delft University of Technology, Netherlands

School of Electronics and Computer Science, University of Southampton *m.m.deweerdt@tudelft.nl, {eg,ss2,vr2,nrj}@ecs.soton.ac.uk

Electric Vehicles

Electric vehicles (EVs) reduce:

- CO₂ emissions and
- dependence on fossil fuels.

However, EVs have a limited range (typically <100 miles).

Public charging stations are scarce and charging is slow (at least 15-30 minutes), leading to potentially long queues and delays.

Routing Problem Traffic network is modelled as a graph: Edges represent roads... ... or charging stations. Travel and waiting times are probabilistic and depend on time of day: $P(\Delta t | e, t_c)$ Optimal policy maximises user's Solution is a **routing policy** (stateexpected utility **E(U(t,s))**. dependent plan): $\pi(e_1,t_c,s_c) = e_2$

- t: time of arrival at destination
- **s**: state of charge at destination

Developed two algorithms to solve this, based on dynamic programming and AO*.

Waiting Time Distributions at Charging Stations

Step 1: Compute probability $P_i^{arr}(e,t)$ of vehicle *i* arriving at station *e* at time *t*, using historic information or intentions, when available.

Step 2: Approximate waiting time distribution by sampling from $P_i^{arr}(e,t)$ and simulating waiting times using a queueing model.

Results

Benchmarks

Min(False): Shortest path *without* considering historical waiting times.

Min(True): Shortest path considering historical waiting times.

Logit(λ,True/False): As Min(True/False), but with random deviations (using logit function with parameter λ).

IARS: Intention-Aware Routing System

Conclusions

- Proposed new routing model for the EV charging setting.
- This incorporates intentions by:
 - Combining known EV policies with historic information.
 - Using a princippled approach for approximating waiting time distributions based on a queueing model
- Evaluation shows significant reduction in overall journey time, compared to approaches using only historic information.
- IARS benefits all agents, even those not using the system.

Future Work

- Evaluation on real road networks and traffic data.
- Comparison to reservation-based systems.
- More advanced queueing models, including variable charging times.

