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Electric Vehicles 

Electric vehicles (EVs) reduce: 
- CO2 emissions and 
- dependence on fossil fuels. 

However, EVs have a limited range 
(typically <100 miles). 
 
Public charging stations are scarce 
and charging is slow (at least 15-30 
minutes), leading to potentially long 
queues and delays. 

Our Solution: 
Intention-Aware Routing System (IARS) 

Use intentions: probabilistic 
information about other 
people’s routes 

Combine with historic 
probabilistic information 

Predict waiting times at 
charging stations based on a 
queueing model 

Calculate the optimal 
routing policy 

Share routing policy (=intention) 

Routing Problem 
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Figure 1: Routing graphs bottleneck (left) and grid (right).

stations to route to and assumes that all agents share the same
source and destination. Here, non-station edges have proba-
bilistic travel times, which we generate by drawing five sam-
ples from the set {1, 2, . . . , 12} (with replacement). Then we
attach a value drawn uniformly at random from [0, 1] to each
unique sample and normalise these to sum to 1, in order to
obtain a probability mass function.4 This is a realistic setting
for the case where several potential routes exist to a popular
destination, e.g., different roads between two large cities or
from a commuter town to the commercial centre of a city. It
represents an extreme setting, as agents need to commit to
a station on departure, some of which will clearly be more
desirable than others in the absence of congestion and may
therefore become bottlenecks. Here, we simulate 20 EVs.

The second scenario, the grid setting, represents a case
where agents have diverse sources and destinations and can
potentially change their policy based on new information
before reaching a station (if using IARS). Thus, it mod-
els a realistic road network, e.g., between several cities or
other points of interest. Here, the travel time distribution on
each road edge is generated by drawing two samples from
{1, 2, . . . , 4}. We simulate 50 EVs, representing a larger,
more complex setting.5 Note the average travel time from
a source to a random charging station (and again to the desti-
nation) is between 65 minutes for bottleneck, and 75 minutes
for grid. This is reasonable, given the current range of EVs.

4.3 Results for Overall Performance
In our first set of experiments, we compare the performance
of all systems in the two settings, as shown in Figure 2. As
we show in Section 4.4, � = 10 and � = 100 perform well in
these settings, respectively, and so we only show their perfor-
mance here. For the bottleneck setting we also plot a centrally
computed optimal solution. As a globally optimal algorithm
is computationally not feasible in the grid setting (due to the
large number of vehicles and possible paths), we give a lower
bound on the journey time here, which is based on a simpler

4For ease of presentation and because we focus on charging sta-
tions in this paper, these are not time-dependent.

5We stress that significantly larger settings are similarly feasible.
To illustrate this, simulating 1,000 EVs with IARS arriving over the
course of a day in the grid setting takes just over two minutes. We
choose 50 EVs here for practical reasons, to allow us to explore a
large parameter space and collect statistically significant data. The
general trends are the same as in larger settings.
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Figure 2: Average journey and waiting times for different sys-
tems in the bottleneck (left) and the grid (right) settings.

graph that combines all charging stations into a single one
with an appropriately higher capacity. This is a very opti-
mistic lower bound, because it allows a simple optimal strat-
egy, where vehicles ignore congestion and choose the path
with the shortest expected travel time.

Several interesting trends emerge here. First, in the bottle-
neck setting, both MIN approaches perform badly, leading to
an average journey time of around 386 and 399 minutes (for
MIN(FALSE) and MIN(TRUE), respectively). This is more
than twice the optimal with 186 minutes. The reason for this
is that the MIN approaches always choose the one route that
minimises their travel time (in expectation), but as all agents
act on the same information, they pick the same path, leading
to a single extremely congested station. This is evidenced by
the high proportion of time spent queueing rather than travel-
ling. Surprisingly, performance decreases even further when
an explicit model of waiting times is used by the MIN ap-
proach. This is because the agents learn that the first station
was highly congested, but then move in tandem to the next
best option, resulting in the same queues, but longer travel
times. Clearly, this highlights the perils of using a simple
travel time minimisation approach in settings where agents
have similar requirements.

The remaining approaches in the bottleneck setting all per-
form surprisingly well. Our proposed IARS system achieves
the same performance as the globally optimal benchmark,
while even the simpler randomised LOGIT approaches lead
to an average journey time of 192 minutes.

The trends in the grid setting are slightly different. Here,
MIN(FALSE) without queueing model still achieves an over-
all bad performance with an average journey time of 329 min-
utes (a 101% increase over the optimal bound of 163 min-
utes), most of which is spent queueing again. However, this is
significantly improved by including an explicit model of sta-
tion waiting times using historical arrivals (223 minutes, 38%
increase), because it allows the agent to reason about queues
(which are more heterogeneous in this setting due to the vari-
able sources and destinations). Also, adding randomisation
(242 minutes, 48% increase over the bound) is beneficial in
this setting, because it avoids congestion at otherwise more
desirable stations. Combining both, the LOGIT(100,TRUE)
achieves an average travel time of 195 minutes (20% in-
crease). Finally, the IARS achieves an even higher perfor-
mance, with an average journey time of 184 minutes (13%
more than the optimal bound).

Traffic network is modelled as a graph: 

Edges represent roads… 

… or charging stations. 

Travel and waiting times are probabilistic 
and depend on time of day:  P(Δt|e,tc )

Solution is a routing policy (state-
dependent plan): π (e1,tc, sc ) = e2
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Optimal policy maximises user’s 
expected utility E(U(t,s)). 

t: time of arrival at destination 
s: state of charge at destination 

Developed two algorithms to solve 
this, based on dynamic 
programming and AO*. 

Waiting Time Distributions 
at Charging Stations 

Step 1: Compute probability  
of vehicle i arriving at station e at 
time t, using historic information or 
intentions, when available. 
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Step 2: Approximate waiting time 
distribution by sampling from 
and simulating waiting times using a 
queueing model.  
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Figure 1: Routing graphs bottleneck (left) and grid (right).

stations to route to and assumes that all agents share the same
source and destination. Here, non-station edges have proba-
bilistic travel times, which we generate by drawing five sam-
ples from the set {1, 2, . . . , 12} (with replacement). Then we
attach a value drawn uniformly at random from [0, 1] to each
unique sample and normalise these to sum to 1, in order to
obtain a probability mass function.4 This is a realistic setting
for the case where several potential routes exist to a popular
destination, e.g., different roads between two large cities or
from a commuter town to the commercial centre of a city. It
represents an extreme setting, as agents need to commit to
a station on departure, some of which will clearly be more
desirable than others in the absence of congestion and may
therefore become bottlenecks. Here, we simulate 20 EVs.

The second scenario, the grid setting, represents a case
where agents have diverse sources and destinations and can
potentially change their policy based on new information
before reaching a station (if using IARS). Thus, it mod-
els a realistic road network, e.g., between several cities or
other points of interest. Here, the travel time distribution on
each road edge is generated by drawing two samples from
{1, 2, . . . , 4}. We simulate 50 EVs, representing a larger,
more complex setting.5 Note the average travel time from
a source to a random charging station (and again to the desti-
nation) is between 65 minutes for bottleneck, and 75 minutes
for grid. This is reasonable, given the current range of EVs.

4.3 Results for Overall Performance
In our first set of experiments, we compare the performance
of all systems in the two settings, as shown in Figure 2. As
we show in Section 4.4, � = 10 and � = 100 perform well in
these settings, respectively, and so we only show their perfor-
mance here. For the bottleneck setting we also plot a centrally
computed optimal solution. As a globally optimal algorithm
is computationally not feasible in the grid setting (due to the
large number of vehicles and possible paths), we give a lower
bound on the journey time here, which is based on a simpler

4For ease of presentation and because we focus on charging sta-
tions in this paper, these are not time-dependent.

5We stress that significantly larger settings are similarly feasible.
To illustrate this, simulating 1,000 EVs with IARS arriving over the
course of a day in the grid setting takes just over two minutes. We
choose 50 EVs here for practical reasons, to allow us to explore a
large parameter space and collect statistically significant data. The
general trends are the same as in larger settings.
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Figure 2: Average journey and waiting times for different sys-
tems in the bottleneck (left) and the grid (right) settings.

graph that combines all charging stations into a single one
with an appropriately higher capacity. This is a very opti-
mistic lower bound, because it allows a simple optimal strat-
egy, where vehicles ignore congestion and choose the path
with the shortest expected travel time.

Several interesting trends emerge here. First, in the bottle-
neck setting, both MIN approaches perform badly, leading to
an average journey time of around 386 and 399 minutes (for
MIN(FALSE) and MIN(TRUE), respectively). This is more
than twice the optimal with 186 minutes. The reason for this
is that the MIN approaches always choose the one route that
minimises their travel time (in expectation), but as all agents
act on the same information, they pick the same path, leading
to a single extremely congested station. This is evidenced by
the high proportion of time spent queueing rather than travel-
ling. Surprisingly, performance decreases even further when
an explicit model of waiting times is used by the MIN ap-
proach. This is because the agents learn that the first station
was highly congested, but then move in tandem to the next
best option, resulting in the same queues, but longer travel
times. Clearly, this highlights the perils of using a simple
travel time minimisation approach in settings where agents
have similar requirements.

The remaining approaches in the bottleneck setting all per-
form surprisingly well. Our proposed IARS system achieves
the same performance as the globally optimal benchmark,
while even the simpler randomised LOGIT approaches lead
to an average journey time of 192 minutes.

The trends in the grid setting are slightly different. Here,
MIN(FALSE) without queueing model still achieves an over-
all bad performance with an average journey time of 329 min-
utes (a 101% increase over the optimal bound of 163 min-
utes), most of which is spent queueing again. However, this is
significantly improved by including an explicit model of sta-
tion waiting times using historical arrivals (223 minutes, 38%
increase), because it allows the agent to reason about queues
(which are more heterogeneous in this setting due to the vari-
able sources and destinations). Also, adding randomisation
(242 minutes, 48% increase over the bound) is beneficial in
this setting, because it avoids congestion at otherwise more
desirable stations. Combining both, the LOGIT(100,TRUE)
achieves an average travel time of 195 minutes (20% in-
crease). Finally, the IARS achieves an even higher perfor-
mance, with an average journey time of 184 minutes (13%
more than the optimal bound).

Graphs 

Benchmarks 

Min(False): Shortest path without considering 
historical waiting times. 
 
Min(True): Shortest path considering historical 
waiting times. 
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Figure 1: Routing graphs bottleneck (left) and grid (right).

stations to route to and assumes that all agents share the same
source and destination. Here, non-station edges have proba-
bilistic travel times, which we generate by drawing five sam-
ples from the set {1, 2, . . . , 12} (with replacement). Then we
attach a value drawn uniformly at random from [0, 1] to each
unique sample and normalise these to sum to 1, in order to
obtain a probability mass function.4 This is a realistic setting
for the case where several potential routes exist to a popular
destination, e.g., different roads between two large cities or
from a commuter town to the commercial centre of a city. It
represents an extreme setting, as agents need to commit to
a station on departure, some of which will clearly be more
desirable than others in the absence of congestion and may
therefore become bottlenecks. Here, we simulate 20 EVs.

The second scenario, the grid setting, represents a case
where agents have diverse sources and destinations and can
potentially change their policy based on new information
before reaching a station (if using IARS). Thus, it mod-
els a realistic road network, e.g., between several cities or
other points of interest. Here, the travel time distribution on
each road edge is generated by drawing two samples from
{1, 2, . . . , 4}. We simulate 50 EVs, representing a larger,
more complex setting.5 Note the average travel time from
a source to a random charging station (and again to the desti-
nation) is between 65 minutes for bottleneck, and 75 minutes
for grid. This is reasonable, given the current range of EVs.

4.3 Results for Overall Performance
In our first set of experiments, we compare the performance
of all systems in the two settings, as shown in Figure 2. As
we show in Section 4.4, � = 10 and � = 100 perform well in
these settings, respectively, and so we only show their perfor-
mance here. For the bottleneck setting we also plot a centrally
computed optimal solution. As a globally optimal algorithm
is computationally not feasible in the grid setting (due to the
large number of vehicles and possible paths), we give a lower
bound on the journey time here, which is based on a simpler

4For ease of presentation and because we focus on charging sta-
tions in this paper, these are not time-dependent.

5We stress that significantly larger settings are similarly feasible.
To illustrate this, simulating 1,000 EVs with IARS arriving over the
course of a day in the grid setting takes just over two minutes. We
choose 50 EVs here for practical reasons, to allow us to explore a
large parameter space and collect statistically significant data. The
general trends are the same as in larger settings.
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tems in the bottleneck (left) and the grid (right) settings.

graph that combines all charging stations into a single one
with an appropriately higher capacity. This is a very opti-
mistic lower bound, because it allows a simple optimal strat-
egy, where vehicles ignore congestion and choose the path
with the shortest expected travel time.

Several interesting trends emerge here. First, in the bottle-
neck setting, both MIN approaches perform badly, leading to
an average journey time of around 386 and 399 minutes (for
MIN(FALSE) and MIN(TRUE), respectively). This is more
than twice the optimal with 186 minutes. The reason for this
is that the MIN approaches always choose the one route that
minimises their travel time (in expectation), but as all agents
act on the same information, they pick the same path, leading
to a single extremely congested station. This is evidenced by
the high proportion of time spent queueing rather than travel-
ling. Surprisingly, performance decreases even further when
an explicit model of waiting times is used by the MIN ap-
proach. This is because the agents learn that the first station
was highly congested, but then move in tandem to the next
best option, resulting in the same queues, but longer travel
times. Clearly, this highlights the perils of using a simple
travel time minimisation approach in settings where agents
have similar requirements.

The remaining approaches in the bottleneck setting all per-
form surprisingly well. Our proposed IARS system achieves
the same performance as the globally optimal benchmark,
while even the simpler randomised LOGIT approaches lead
to an average journey time of 192 minutes.

The trends in the grid setting are slightly different. Here,
MIN(FALSE) without queueing model still achieves an over-
all bad performance with an average journey time of 329 min-
utes (a 101% increase over the optimal bound of 163 min-
utes), most of which is spent queueing again. However, this is
significantly improved by including an explicit model of sta-
tion waiting times using historical arrivals (223 minutes, 38%
increase), because it allows the agent to reason about queues
(which are more heterogeneous in this setting due to the vari-
able sources and destinations). Also, adding randomisation
(242 minutes, 48% increase over the bound) is beneficial in
this setting, because it avoids congestion at otherwise more
desirable stations. Combining both, the LOGIT(100,TRUE)
achieves an average travel time of 195 minutes (20% in-
crease). Finally, the IARS achieves an even higher perfor-
mance, with an average journey time of 184 minutes (13%
more than the optimal bound).
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Figure 3: Average journey times for varying � parameters in
the bottleneck setting (left) and the grid setting (right).

4.4 Results for LOGIT(�)
So far, LOGIT(�) appears to be a promising alternative to
IARS. To examine this in more detail, we show the perfor-
mance of LOGIT(�,TRUE) for a range of � parameters in
Figure 3. These results show that LOGIT is somewhat sen-
sitive to the choice of �, which raises the question of how �
should be chosen in real-life settings.

More significantly, however, the figure also shows the av-
erage journey time a single deviating agent would achieve by
switching to the MIN(TRUE) approach (assuming all other
agents use LOGIT). This is never higher than LOGIT and,
in fact, typically lower. In other words, while randomisation
benefits the overall system, as it disperses agents across the
stations, a single agent always has an incentive to deviate and
head for the station with the lowest expected journey time.
Thus, LOGIT is not a viable alternative in realistic systems.

4.5 Results for IARS
To further explore our proposed IARS system, we now con-
sider settings where only a proportion of agents use IARS,
while the others use MIN(TRUE) or LOGIT(100,TRUE).
This is an interesting setting, because it shows how the system
performance changes as intentions are gradually introduced
into a system (and indeed whether it is beneficial if only a
few agents use IARS). Similar to the previous section, it also
investigates whether agents have an incentive to switch to (or
from) IARS. In this setting, we measure the average journey
time for each type of agent, but we also measure the system-
wide average across the population (i.e., the social welfare).

The results are given in Figure 4 (we show only the grid
settings, as the results in the bottleneck setting are simi-
lar). Here, several clear trends emerge: as more agents use
IARS, the system-wide average journey time decreases. Fur-
thermore, agents that use IARS always have lower average
journey times than those that do not, indicating that there
is a strong incentive to use IARS for all system partici-
pants. Apart from this, the graphs show two further interest-
ing trends. First, even when only a few agents use intentions,
their average journey time already dramatically decreases as
they can coordinate their decisions. In fact, when others use
LOGIT, the IARS agents achieve their minimum journey time
when only a small proportion use the system. This is similar
to the results in Figure 3, where agents can exploit inefficien-
cies in the strategies of other agents. The second interesting
trend is that agents using MIN benefit themselves when more
agents switch to IARS, but this trend is not evident for agents
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Figure 4: Average journey times as the number of EVs using
IARS is varied in the grid setting. Top graph assumes others
use MIN(TRUE), while bottom assumes LOGIT(�,TRUE).

using LOGIT. This is simply because the typically high con-
gestion at desirable stations caused by MIN is gradually re-
duced as fewer agents adopt this approach.

5 Conclusions and Future Work
This work extends both models and algorithms for stochastic
time-dependent routing to take charging stations and the state
of charge of EVs into account. Another main contribution is a
novel approach where we combine (stochastic) intentions of
other agents with historical data to obtain more accurate wait-
ing time distributions. In order to do so, we explicitly model
queues at charging stations. As part of our evaluation we de-
fined an optimistic bound, as well as an alternative routing
system based on logit that does not use intentions, but helps to
prevent congestion at charging stations by randomising over
options. Through extensive experiments, we established that
both an explicit queueing model as well as randomisation
increases social welfare, but that IARS outperforms even a
combination of these systems. Moreover, agents using the
randomised system have an incentive to switch to a determin-
istic strategy, while we showed that individual agents always
achieve lower journey times with IARS.

The IARS does not require any monetary transfers. How-
ever, an interesting direction for further study is to view co-
ordinating the en-route charging of EVs under uncertainty
as a mechanism design problem. In particular, we are in-
terested in combining our work with pricing models to be
able to find more efficient solutions, such as used for charg-
ing at home [Stein et al., 2012; Clement-Nyns et al., 2010;
Vasirani and Ossowski, 2011].

To transition our solution into a practical application, we
additionally plan to extend our work with simulations with
real data to obtain better insights into the quantitative advan-
tages of deploying IARS, and it would be useful to develop
heuristics for both policy computation as well as combining
the distributions to improve run time and scalability.

Logit(λ,True/False): As Min(True/False), but with 
random deviations (using logit function with parameter λ). 
 
IARS: Intention-Aware Routing System 
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stations to route to and assumes that all agents share the same
source and destination. Here, non-station edges have proba-
bilistic travel times, which we generate by drawing five sam-
ples from the set {1, 2, . . . , 12} (with replacement). Then we
attach a value drawn uniformly at random from [0, 1] to each
unique sample and normalise these to sum to 1, in order to
obtain a probability mass function.4 This is a realistic setting
for the case where several potential routes exist to a popular
destination, e.g., different roads between two large cities or
from a commuter town to the commercial centre of a city. It
represents an extreme setting, as agents need to commit to
a station on departure, some of which will clearly be more
desirable than others in the absence of congestion and may
therefore become bottlenecks. Here, we simulate 20 EVs.

The second scenario, the grid setting, represents a case
where agents have diverse sources and destinations and can
potentially change their policy based on new information
before reaching a station (if using IARS). Thus, it mod-
els a realistic road network, e.g., between several cities or
other points of interest. Here, the travel time distribution on
each road edge is generated by drawing two samples from
{1, 2, . . . , 4}. We simulate 50 EVs, representing a larger,
more complex setting.5 Note the average travel time from
a source to a random charging station (and again to the desti-
nation) is between 65 minutes for bottleneck, and 75 minutes
for grid. This is reasonable, given the current range of EVs.

4.3 Results for Overall Performance
In our first set of experiments, we compare the performance
of all systems in the two settings, as shown in Figure 2. As
we show in Section 4.4, � = 10 and � = 100 perform well in
these settings, respectively, and so we only show their perfor-
mance here. For the bottleneck setting we also plot a centrally
computed optimal solution. As a globally optimal algorithm
is computationally not feasible in the grid setting (due to the
large number of vehicles and possible paths), we give a lower
bound on the journey time here, which is based on a simpler

4For ease of presentation and because we focus on charging sta-
tions in this paper, these are not time-dependent.

5We stress that significantly larger settings are similarly feasible.
To illustrate this, simulating 1,000 EVs with IARS arriving over the
course of a day in the grid setting takes just over two minutes. We
choose 50 EVs here for practical reasons, to allow us to explore a
large parameter space and collect statistically significant data. The
general trends are the same as in larger settings.
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Figure 2: Average journey and waiting times for different sys-
tems in the bottleneck (left) and the grid (right) settings.

graph that combines all charging stations into a single one
with an appropriately higher capacity. This is a very opti-
mistic lower bound, because it allows a simple optimal strat-
egy, where vehicles ignore congestion and choose the path
with the shortest expected travel time.

Several interesting trends emerge here. First, in the bottle-
neck setting, both MIN approaches perform badly, leading to
an average journey time of around 386 and 399 minutes (for
MIN(FALSE) and MIN(TRUE), respectively). This is more
than twice the optimal with 186 minutes. The reason for this
is that the MIN approaches always choose the one route that
minimises their travel time (in expectation), but as all agents
act on the same information, they pick the same path, leading
to a single extremely congested station. This is evidenced by
the high proportion of time spent queueing rather than travel-
ling. Surprisingly, performance decreases even further when
an explicit model of waiting times is used by the MIN ap-
proach. This is because the agents learn that the first station
was highly congested, but then move in tandem to the next
best option, resulting in the same queues, but longer travel
times. Clearly, this highlights the perils of using a simple
travel time minimisation approach in settings where agents
have similar requirements.

The remaining approaches in the bottleneck setting all per-
form surprisingly well. Our proposed IARS system achieves
the same performance as the globally optimal benchmark,
while even the simpler randomised LOGIT approaches lead
to an average journey time of 192 minutes.

The trends in the grid setting are slightly different. Here,
MIN(FALSE) without queueing model still achieves an over-
all bad performance with an average journey time of 329 min-
utes (a 101% increase over the optimal bound of 163 min-
utes), most of which is spent queueing again. However, this is
significantly improved by including an explicit model of sta-
tion waiting times using historical arrivals (223 minutes, 38%
increase), because it allows the agent to reason about queues
(which are more heterogeneous in this setting due to the vari-
able sources and destinations). Also, adding randomisation
(242 minutes, 48% increase over the bound) is beneficial in
this setting, because it avoids congestion at otherwise more
desirable stations. Combining both, the LOGIT(100,TRUE)
achieves an average travel time of 195 minutes (20% in-
crease). Finally, the IARS achieves an even higher perfor-
mance, with an average journey time of 184 minutes (13%
more than the optimal bound).

Performance Comparison 

Bottleneck 
Grid 

Deviation from Logit 

Incentives to adopt IARS 

Conclusions 
-  Proposed new routing model for the EV charging 

setting. 
-  This incorporates intentions by: 

-  Combining known EV policies with historic 
information. 

-  Using a princinpled approach for approximating 
waiting time distributions based on a queueing 
model 

-  Evaluation shows significant reduction in overall 
journey time, compared to approaches using only 
historic information. 

-  IARS benefits all agents, even those not using the 
system. 

Future Work 
-  Evaluation on real road networks and traffic data. 
-  Comparison to reservation-based systems. 
-  More advanced queueing models, including variable 

charging times. 
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