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PARALLEL PERFORMANCE INVESTIGATIONS OF AN UNSTRUCTURED MESH
NAVIER-STOKES SOLVER

DIMITRI J. MAVRIPLIS∗

Abstract. A Reynolds-averaged Navier-Stokes solver based on unstructured mesh techniques for analysis
of high-lift configurations is described. The method makes use of an agglomeration multigrid solver for
convergence acceleration. Implicit line-smoothing is employed to relieve the stiffness associated with highly
stretched meshes. A GMRES technique is also implemented to speed convergence at the expense of additional
memory usage. The solver is cache efficient and fully vectorizable, and is parallelized using a two-level
hybrid MPI-OpenMP implementation suitable for shared and/or distributed memory architectures, as well
as clusters of shared memory machines. Convergence and scalability results are illustrated for various high-lift
cases.
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1. Introduction. The work described in this paper represents extensions and improvements to a pre-
viously described unstructured multigrid flow solver which has been used extensively for high-lift analysis
[9, 11, 12]. Unstructured mesh approaches are well suited for high-lift applications where complicated ge-
ometries are most often encountered. However, in order to offset the additional computational overheads
associated with unstructured meshes, and in the interest of enabling solutions on very high resolution grids
for high accuracy, special attention must be devoted to producing a rapidly converging algorithm, as well as
an extremely scalable solution procedure which can run efficiently on thousands of processors.

The basic solution algorithm consists of a non-linear multigrid solver, enhanced by a directional line-
implicit preconditioning technique for overcoming the stiffness associated with highly-stretched meshes. In
the current work, the existing unstructured multigrid solver has been extended to support both cache-based
and vector architectures as well as multi-level parallelism. The original MPI-based parallel implementation
has been extended to a two-level parallelization strategy which employs MPI to communicate between groups
of partitioned subdomains, and OpenMP to communicate between various subdomains contained within each
MPI process. In this manner, the code can be run in a purely MPI mode, suitable for distributed memory
architectures, a purely OpenMP mode suitable for shared memory architectures, or a hybrid two level MPI-
OpenMP mode suitable for clusters of shared memory processors, typical of many emerging large parallel
supercomputer architectures.

A GMRES procedure is also introduced as an option to speed up convergence when additional memory is
available. This approach is particularly attractive for medium size problems running on distributed memory
architectures, where unused memory on the individual processors represents a resource which can be exploited
at little extra cost by the GMRES algorithm.
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One of the principal aims of this work is to provide an efficient production capability for mid-size
problems (up to 107grid points) on various cost-effective computer architectures, while at the same time
demonstrating the feasibility of computing very large cases (ultimately up to 109 grid points) on custom
parallel supercomputers such as those currently being developed for the DOE ASCI program.

2. Base Solver. The Reynolds averaged Navier-Stokes equations are discretized by a finite-volume
technique on meshes of mixed element types which may include tetrahedra, pyramids, prisms, and hexahedra.
In general, prismatic elements are used in the boundary layer and wake regions, while tetrahedra are used in
the regions of inviscid flow. All elements of the grid are handled by a single unifying edge-based data-structure
in the flow solver [13].

The governing equations are discretized using a central difference finite-volume technique with added
matrix-based artificial dissipation. The matrix dissipation approximates a Roe Rieman-solver based upwind
scheme [19], but relies on a biharmonic operator to achieve second-order accuracy, rather than on a gradient-
based extrapolation strategy [8]. The thin-layer form of the Navier-Stokes equations is employed in all
cases, and the viscous terms are discretized to second-order accuracy by finite-difference approximation. For
multigrid calculations, a first-order discretization is employed for the convective terms on the coarse grid
levels.

The basic time-stepping scheme is a three-stage explicit multistage scheme with stage coefficients opti-
mized for high frequency damping properties [25], and a CFL number of 1.8. Convergence is accelerated by
a local block Jacobi preconditioner, which involves inverting a 5 × 5 matrix for each vertex at each stage
[18, 14, 15, 16]. A low-Mach number preconditioner [27, 23, 26] is also implemented. This has been found to
be essential for high-lift flows which may contain large regions of low Mach number flow particularly on the
lower surfaces of the wing. The low-Mach number preconditioner is implemented by modifying the dissipation
terms in the residual as described in [8], and then taking the corresponding linearization of these modified
terms into account in the Jacobi preconditioner, a process sometimes referred to as “preconditioning2”
[8, 24].

The single equation turbulence model of Spalart and Allmaras [22] is utilized to account for turbulence
effects. This equation is discretized and solved in a manner completely analogous to the flow equations, with
the exception that the convective terms are only discretized to first-order accuracy.

3. Directional-Implicit Multigrid Algorithm. An agglomeration multigrid algorithm [7, 13, 21]
is used to further enhance convergence to steady-state. In this approach, coarse levels are constructed by
fusing together neighboring fine grid control volumes to form a smaller number of larger and more complex
control volumes on the coarse grid. A multigrid cycle consists of performing a time-step on the fine grid
of the sequence, transferring the flow solution and residuals to the coarser level, performing a time-step on
the coarser level, and then interpolating the corrections back from the coarse level to update the fine grid
solution. The process is applied recursively to the coarser grids of the sequence.

While agglomeration multigrid delivers very fast convergence rates for inviscid flow problems, the con-
vergence obtained for viscous flow problems remains much slower, even when employing preconditioning
techniques as described in the previous section. This slowdown is mainly due to the large degree of grid
anisotropy in the viscous regions. A directional smoothing technique [8, 9] is employed to overcome this
aspect-ratio induced stiffness. Directional smoothing is achieved by constructing lines in the unstructured
mesh along the direction of strong coupling (i.e., normal to the boundary layer) and solving the implicit
system along these lines using a tridiagonal line solver.
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A weighted graph algorithm is used to construct the lines on each grid level, using edge weights based
on the stencil coefficients for a scalar convection equation. This algorithm produces lines of variable length.
In regions where the mesh becomes isotropic, the length of the lines reduces to zero (one vertex, zero edges),
and the preconditioned explicit scheme described in the previous section is recovered. An example of the set
of lines constructed from the two-dimensional unstructured grid in Figure 3.1 is depicted in Figure 3.2.

Fig. 3.1. Unstructured Grid for three-element air-

foil; Number of Points = 61,104, Wall Resolution = 10−6

chords

Fig. 3.2. Directional Implicit Lines Constructed on

Grid of Figure 3.1 by Weighted Graph Algorithm

4. Domain Decomposition. The unstructured multigrid solver is parallelized by partitioning the
domain using a standard graph partitioner [5, 6], allocating one or more partitions to each processor of
a parallel computer or cluster of interconnected machines, and communicating between the various grid
partitions using either the MPI message-passing library [4] or the OpenMP shared memory protocols [2].

In the multigrid algorithm, the vertices on each grid level must be partitioned across the available
processors. Since the mesh levels of the agglomeration multigrid algorithm are fully nested, a partition of
the fine grid could be used to infer a partition of all coarser grid levels. While this would minimize the
communication in the inter-grid transfer routines, it affords little control over the quality of the coarse grid
partitions. Since the amount of intra-grid computation on each level is much more important than the
inter-grid computation between each level, it is essential to optimize the partitions on each grid level rather
than between grid levels. Therefore, each grid level is partitioned independently. This results in unrelated
coarse and fine grid partitions. In order to minimize inter-grid communication, the coarse level partitions are
renumbered such that they are assigned to the same processor as the fine grid partition with which they share
the most overlap. For each partitioned level, the edges of the mesh which straddle two adjacent processors
are assigned to one of the processors, and a “ghost vertex” is constructed in this processor, which corresponds
to the vertex originally accessed by the edge in the adjacent processor (c.f. Figure 4.1). During a residual
evaluation, the fluxes are computed along edges and accumulated to the vertices. The flux contributions
accumulated at the ghost vertices must then be added to the flux contributions at their corresponding physical
vertex locations in order to obtain the complete residual at these points. This phase incurs interprocessor
communication. In an explicit (or point implicit) scheme, the updates at all points can then be computed
without any interprocessor communication once the residuals at all points have been calculated. The newly
updated values are then communicated to the ghost points, and the process is repeated.
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Communication Path

Partition 
Boundary

Ghost
Vertex

Created Internal Edges

Fig. 4.1. Illustration of Creation of Internal Edges and Ghost Points at Inter-processor Boundaries

The use of line-solvers can lead to additional complications for distributed-memory parallel implemen-
tations. Since the classical tridiagonal line-solve is an inherently sequential operation, any line which is split
between multiple processors will result in processors remaining idle while the off-processor portion of their
line is computed on a neighboring processor. However, the particular topology of the line sets in the un-
structured grid permit a partitioning the mesh in such a manner that lines are completely contained within
an individual processor, with minimal penalty (in terms of processor imbalance or additional numbers of cut
edges). This can be achieved by using a weighted-graph-based mesh partitioner such as the CHACO [5] or
MeTiS [6] partitioners. Weighted graph partitioning strategies attempt to generate balanced partitions of
sets of weighted vertices, and to minimize the sum of weighted edges which are intersected by the partition
boundaries.

V=3

E=3E=2

E=2

Fig. 4.2. Illustration of Line Edge Contraction and Creation of Weighted Graph for Mesh Partitioning; V and

E Values Denote Vertex and Edge Weights Respectively

In order to avoid partitioning across implicit lines, the original unweighted graph (set of vertices and
edges) which defines the unstructured mesh is contracted along the implicit lines to produce a weighted
graph. Unity weights are assigned to the original graph, and any two vertices which are joined by an edge
which is part of an implicit line are then merged together to form a new vertex. Merging vertices also produce
merged edges as shown in Figure 4.2, and the weights associated with the merged vertices and edges are
taken as the sum of the weights of the constituent vertices or edges. The contracted weighted graph is then
partitioned using one of the partitioners described in references [5, 6], and the resulting partitioned graph
is then de-contracted, i.e., all constituent vertices of a merged vertex are assigned the partition number of
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that vertex. Since the implicit lines reduce to a single point in the contracted graph, they can never be
broken by the partitioning process. The weighting assigned to the contracted graph ensures load balancing
and communication optimization of the final uncontracted graph in the partitioning process.

Due to the large size of the grids considered in this work, all preprocessing operations must be performed
on a large parallel supercomputer. This includes the agglomeration procedure, the partitioning of the various
coarse and fine multigrid levels, and the determination of the inter-processor communication schedules. This
is mostly due to the large memory requirements of these procedures, (which run between 50% and 75%
of the memory requirements of the flow solver, i.e., 1 Kbyte per grid point), rather than the CPU time
requirements, which are small compared to those of the flow solver. At present, these procedures are executed
sequentially on a single processor of an SGI Origin 2000, but using large portions of the memory of the entire
machine. For example, the various preprocessing operations for a 24.7 million point grid required between 10
to 20 Gbytes of memory and between 45 minutes to 90 minutes for each of the operations mentioned above.
The sequential execution of large jobs of this nature is made possible by the shared memory architecture of
the SGI ORIGIN 2000, and cannot be performed on purely distributed memory machines or on clustered
machine architectures. The complete parallelization of these procedures for distributed-memory machines is
currently under development.

5. Cache-Optimization and Vectorization. On each partitioned domain, the solver must be op-
timized for the processor architecture to which the domain is assigned. The two types of architectures
supported are cache-based scalar microprocessors, and vector processors. For a cache-based scalar micro-
processor, grid vertices and edges are reordered to increase locality and hence cache efficiency. This is done
individually on each partition. The grid points are reordered using a breadth-first search technique, similar
to a Cuthill-McKee [3] reordering strategy. The edges are then reordered so that all edges touching each
(reordered) vertex and not previously listed are ordered sequentially,

For vector processor architectures, the grid vertices are reordered in the same manner as described above,
but the edges must be sorted into groups, such that within each group no two edges access the same vertex,
in order to prevent data-recurrences. Vectorization can then proceed within each group. Since many current
vector architectures include a memory cache, the reordering of vertices for locality can still be beneficial.
The block tridiagonal line solves are vectorized by grouping the lines into sets of 64 or 128, which are then
vector-processed. For lines of unequal length, this involves padding the shorter lines with identity matrices
in order to achieve a group of uniform line length.

Figure 5.1 illustrates the single processor computational rates achieved for a small problem (a grid of
approximately 200,000 points) on various current processors. A computational rate of 225 Mflops is achieved
on the Cray-SV1 vector processor, while a rate of 75 Mflops is achieved on an Origin 2000 processor (250
MHz R10000).
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Fig. 5.1. Computational Rates of Unstructured Multigrid Solver on Various Processors

6. Parallel Programming Models. For parallel execution, the partitioned subdomains are dis-
tributed to the various processors of a parallel machine or a cluster of machines. During the parallel execution
of the program, inter-processor communication between the ghost points and their real images in neighbor-
ing partitions is required (see Figure 4.1). For distributed memory architectures, this communication is
implemented using the MPI message-passing library [4]. The inter-processor communication patterns are
pre-determined at run-time. Communication is then executed by packing messages from all ghost points on
a given processor that are to be sent to another processor into a buffer that is then sent as a single message.
This standard approach to inter-processor communication has the effect of reducing latency overheads by
creating fewer larger messages.

For shared memory architectures, a potentially more efficient communication strategy is to simply copy
(or copy-add) the values from the individual ghost points into the locations which correspond to their real
images, since the memory on different partitions is addressable from any other partition. Additionally, the
OpenMP standard [2] provides a simple strategy for parallelizing shared memory programs through the use
of compiler directives.

The original parallel implementation of the unstructured mesh solver was written using the MPI commu-
nication library [11]. The solver has currently been extended to include the capability for running OpenMP
in the place of, or in addition to, MPI. This is achieved by first modifying the code to enable the sequential
processing of multiple subdomains on each processor. This involves wrapping a loop over the number of
subdomains on a processor around the original subroutines which performed the computations in the MPI
program. Parallelization over the local subdomains can then be achieved simply by inserting the appropriate
OpenMP compiler directive directly preceding the loop over the number of subdomains. In addition, routines
which identify the memory locations of the ghost vertices and their corresponding real images in neighboring
subdomains must be constructed, as well as the routines which actually copy these values to and from their
corresponding locations.

For each MPI process, the individual arrays are initialized globally across all local subdomains, and
pointers which identify the starting location of each subdomain are constructed. These arrays, indexed by
the subdomain pointer, are then passed as arguments to the subdomain subroutines.
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-

include OMP DIRECTIVE

do : Loop over number of partitions

call domain local routine(array(ptr(partition id)))

——————————————————-

do : Loop over number of vector groups

do : Loop over edges in a vector group

n1 = edge end(1,iedge)

n2 = edge end(2,iedge)

flux = function of values at n1,n2

residual(n1) = residual(n1) + flux

residual(n2) = residual(n2) - flux

enddo

enddo

——————————————————-

enddo

c

include OMP DIRECTIVE

do : Loop over number of partitions

call OMP communicate

enddo

c

include OMP DIRECTIVE

do : Loop over number of partitions

call MPI communicate

enddo

Fig. 6.1. Pseudo Code Illustration of the Code Structure for Vectorized Hybrid MPI-OpenMP Routine for Thread-to-

Thread Communication Model. (Dashed lines delimit in-lined subroutine representation)

In this manner, all array references in the subdomain routines are subdomain-local, and the existing
MPI subdomain code is preserved. Figure 6.1 illustrates the code structure within an MPI process. The
initial loop runs over the number of local subdomains. Since all these loops throughout the code are similar,
the whole code can be parallelized under OpenMP using a handful of compiler directives. The subdomain
routine is called in this primary loop. For brevity, the subdomain routine code has been inlined in the pseudo
code of Figure 6.1. This includes the second loop and third loops of the figure. The second loop runs over the
sorted groups of edges in order to enable vectorization within a group. For a scalar processor, the number
of such groups reduces to one, which includes all edges. The third loop runs over the edges within a group.
After these three nested loops are executed, the routine which performs the shared memory communication
is called, followed by the routine which performs MPI communication, in the case of the thread-to-thread
communication model described below.

The code structure is such that no explicit OpenMP synchronization steps (omp barrier) are employed.
Rather, separate parallelized do loops are employed. While these loops contain implicit synchronization
steps, they also enable the sequential execution of the code in the absence of any OpenMP directives. This
enables the code to run with multiple partitions on individual processors.

The current implementation results in a code which can be run in a purely MPI mode, suitable for
distributed memory architectures, a purely OpenMP mode, suitable for shared memory architectures, or a
two-level hybrid MPI-OpenMP mode, suitable for clusters of shared-memory processors.

There are various possible strategies for implementing MPI communication in conjunction with OpenMP.
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While OpenMP achieves parallelism by spawning multiple threads within a process [2], the MPI library is
only defined on a process basis and in general cannot distinguish between multiple threads. However, in
a thread-safe MPI implementation [1], MPI calls may be executed by the individual threads in a multi-
threaded environment. A communication strategy which can be executed entirely in parallel consists of
having individual threads perform MPI calls to send and receive messages to and from other threads living
on other MPI processes, as illustrated in Figure 6.2. In this case, the MPI calls must specify the process
identifier (id number) as well as the thread id to which the message is being sent (or received). While the
specification of a process id is a standard procedure within an MPI call, the specification of a thread id
can be implemented using the MPI send-recv tag [4]. In this approach, the size and number of messages is
identical to that produced by an equivalent code running MPI alone on all subdomains.

An alternate approach, illustrated in Figure 6.3, consists of having all threads pack their messages
destined for other threads of a particular remote MPI process into a single buffer, and then having the MPI
process (i.e., the master thread alone) send and receive the message using MPI . The received messages can
then be unpacked or scattered to the appropriate local subdomains. This packing and unpacking of messages
can be done in a thread-parallel fashion. However, the MPI sends and receives are executed only by the
master thread, and these operations may become sequential bottlenecks since all other threads remain idle
during this phase. One way to mitigate this effect is to overlap OpenMP and MPI communication. Using
non-blocking sends and receives, the master thread first issues all the MPI receive calls, followed by all the
MPI send calls. After this, while the MPI messages are in transit, the OpenMP communication routines
are executed by all threads, after which, the master thread waits until all MPI messages are received.
Thread-parallel unpacking of the MPI messages then proceeds as usual. This approach also results in a
smaller number of larger messages being issued by the MPI routines, which may be beneficial for reducing
latency on the network supporting the MPI calls. On the other hand, there is always a (thread-) sequential
portion of communication in this approach, which may degrade performance depending on the degree of
communication overlap achieved. Note that the grouping of communication into multiple overlapping levels
is not particular to the MPI-OpenMP programming model, but could be implemented on MPI-alone or
OpenMP-alone models, although implementation would be considerably more complicated.

MPI_SEND MPI_RECV

THREAD 2

MPI PROC 1 MPI PROC 2

THREAD 0 THREAD 1 THREAD 2

MPI 2  THREAD 0

THREAD 0

MPI 1 THREAD 1

THREAD 1

Fig. 6.2. Illustration of Thread-to-Thread MPI Com-

munication for a Two-level Hybrid MPI-OpenMP Imple-

mentation

MPI PROC 1

Messages

MPI PROC 2

THREAD 0 THREAD 1 THREAD 2 THREAD 0 THREAD 1 THREAD 2

OpenMP

Pack Messages

MPI Send-Recv

OpenMP
Unpack

Fig. 6.3. Illustration of Master-Thread Con-

trolled MPI Communication for a Two-level Hybrid MPI-

OpenMP Implementation

7. Scalability Results. We begin with a comparison between pure MPI and pure OpenMP imple-
mentations on two shared-memory architectures, the Cray SV1, and the SGI Origin 2000, for the single grid
(non-multigrid) solver. The test case consists of a 3.1 million point grid about an aircraft high-lift system
with no nacelle, which has been previously described in detail [12]. For comparison purposes, the solver
achieves a single processor computational rate of 75 Mflops on the Origin 2000, and 225 Mflops on the Cray
SV1. Figure 7.1 depicts a comparison of the scalability achieved using OpenMP and using MPI on the Cray
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SV1, while Figure 7.2 depicts the same comparison on the Origin 2000. In both cases, the two approaches
yield very similar results. The Cray SV1 contains a relatively flat memory architecture and the MPI library
is implemented using the shared memory protocols, so one would expect the two approaches to yield similar
results. The OpenMP implementation is seen to give slightly lower scalability although the actual timings
are never more than 10% apart for both methods.

The cc-NUMA memory architecture of the SGI Origin 2000 can significantly alter the performance of
a shared memory implementation depending on how the requested memory is mapped to the architecture,
since this memory is logically shared, but physically distributed. The current implementation makes use of
the first touch rules, in which memory is allocated to the processors which are the first to access or touch it.
Memory placement is thus achieved by executing a parallel loop in which each processor initializes all arrays
on the subdomain(s) to which it has been assigned. Figure 7.2 indicates that the performance of OpenMP
and MPI are very similar on the Origin 2000, right up to 128 processors. OpenMP is again slightly slower
than the MPI implementation, but the timings differ by no more than 10% in all cases. The slightly slower
OpenMP results may be due to the higher number of implicit synchronizations in this implementation.

Figure 7.3 illustrates the speedups achieved for a small problem (200,000 grid points) running on single
and dual 400MHz Pentium II processors in a shared memory cabinet using MPI and OpenMP. In this case,
the OpenMP result is slightly faster than the MPI result using the same two shared-memory processors. On
the other hand, the best result is obtained using MPI on two distributed memory processors, which offers
twice the effective memory bandwidth of the shared memory configuration.

Figure 7.4 depicts the relative speedups in going from 16 to 32 processors for the 3.1 million point case
discussed previously on a cluster of 32 Pentium 500 MHz processors, arranged as 16 cabinets with two shared
memory processors each. The baseline 16 cpu case was run using one MPI process on each processor. The
32 cpu case was run as a pure MPI code using one MPI process on each processor, and as a mixed MPI
- OpenMP code, using one MPI process on each cabinet, with 2 OpenMP threads per cabinet, using both
communication models described in the previous section. In this case, the MPI-alone strategy produces the
best speedup, although the differences between all three methods are very small.
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Fig. 7.1. Observed Speedups for MPI-alone and

OpenMP-alone Implementations of Single Grid Solver on

Cray-SV1 Vector Machine
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Figure 7.5 depicts the relative timings for the same case running in the hybrid MPI-OpenMP mode on
an Origin 2000, using different combinations of MPI and OpenMP, up to 128 processors, for the thread-
to-thread communication model, while Figure 7.6 depicts the results obtained using the overlapping MPI-
OpenMP communication model. The data point at 64 MPI processes and 2 OpenMP threads in Figure
7.5 is not representative, since in this case the operating system would occasionally place two threads on
one processor. With this exception, both figures indicate that for small OpenMP thread counts, a minor
slowdown is observed for the hybrid model over the pure MPI model, with mounting efficiency losses as the
number of threads is increased, although these are substantially smaller for the overlapping MPI-OpenMP
communication model.

In the case of thread-to-thread communication, much of the slowdown has been traced to the MPI calls
locking and thus executing sequentially at the thread level. Apparently, the definition of “thread-safe” MPI
at present simply refers to the possibility of executing MPI calls from a multi-threaded environment, and
does not cover the thread-parallel execution of such MPI procedures. Because there are more messages to
be sent and no overlap in this case, poorer performance than in the alternate approach is observed. The
performance of MPI under OpenMP can be expected to be dependent on vendor implementation, and it
is still not clear whether fully thread-level parallel MPI communication will be implemented by vendors in
future releases.
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Figures 7.7 through 7.9 depict the scalability for the same case using MPI exclusively on three large
parallel machines: the ASCI Red machine, an Intel based machine at Sandia National Laboratory, the ASCI
Blue Pacific Machine, an IBM based machine at Lawrence Livermore National Laboratory, and the ASCI Blue
Mountain Machine, a collection of 16 × 128 cpu Origin 2000 Machines at Los Alamos National Laboratory.
In the first two cases, the scalability of the single grid solver is also compared with that of the multigrid
solver using 5 grid levels. As expected, the multigrid solver delivers somewhat lower scalability than the
single grid solver due to the larger amount of communication generated on the coarser grids, although both
algorithms follow the same asymptotic trends. In practice, the multigrid solver always delivers much faster
convergence and must be used for converging real problems. However, the single grid scalability results can
be interpreted as an upper limit on the scalability achievable by the multigrid algorithms.

From these figures, the best scalability is observed on the ASCI Red machine with good speedups
observed right up to 2048 processors, while scalability on the two other machines begins to drop off around
256 to 512 processors. Better scalability is observed for larger problem sizes, as shown in Figure 7.9 and
Figure 7.10, where a 24.7 million point grid (exact subdivision by 8 of the previous grid) is seen to scale
reasonably well up to 1024 Origin 2000 processors, and up to 1450 processors on the T3E-1200E.
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Fig. 7.8. Observed Speedups for Single Grid and

Multigrid Solver on IBM-Based Machine at Lawrence Liv-

ermore National Laboratory
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Fig. 7.9. Observed Speedups for 3.1 million point and

24.7 million point single grid problem on ASCI Blue Moun-

tain SGI-Origin-Cluster Machine at Los Alamos National

Laboratory
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Fig. 7.10. Observed Speedups for 24.7 million point

single grid problem on Cray T3E-1200E

8. GMRES Acceleration. While good scalability on large numbers of processors is important for
reducing turnaround time, accelerating the numerical convergence to steady-state is equally important in
achieving this goal. Although the preconditioned unstructured multigrid algorithm described previously [10]
provides relatively fast convergence for many cases, further increases in convergence efficiency can be achieved
by incorporating a Krylov acceleration technique such as the General Minimum Residual (GMRES) method
[20]. The existing preconditioned directional implicit agglomeration multigrid algorithm can be employed as
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a preconditioner itself to GMRES [8, 15]. The current implementation uses a nonlinear GMRES solver [28]
which computes Jacobian-vector products by finite differencing the residual.

Parallelization of the GMRES algorithm is almost trivial, since the bulk of the work is confined to the
existing parallel multigrid solver. The principal additional steps involve the computation of global norms
for each search direction (implemented as parallel reduction operations), and the solution of a least-squares
problem of the order of the number of search directions, which is performed redundantly on each processor.

The addition of GMRES incurs little extra cpu time, measured on a multigrid cycle basis, but requires
considerable additional storage, since a solution vector must be stored for each of the Krylov search directions.
In the current implementation, 20 search directions are employed, resulting in a memory increase of 100 words
per vertex (about 50% increase).

One of the attractive features of this implementation is that the number of search directions can be
specified at run time. Since many parallel computers are run in the space-sharing (as opposed to time-
sharing) mode, each cpu most often hosts a single process. In situations where this process does not require
the entire amount of memory local to that processor, additional GMRES search directions can be used to
make use of this “free” memory, thus accelerating convergence and reducing overall cpu time.
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Fig. 8.1. Multigrid Convergence Rates for Coarse (3.1 million pt) Grid with and without GMRES acceleration

and Fine (24.7 million pt) Grid without GMRES acceleration at 0.2 Mach Number and 10 degrees Incidence

The convergence history for the previously discussed aircraft high-lift case is shown in Figure 8.1. The
freestream Mach number is 0.2, the incidence is 10 degrees, and the Reynolds number is 1.6 million. Con-
vergence is shown for the coarse 3.1 million point grid with and without GMRES acceleration option, as
well as for the 24.7 million point grid without GMRES. The convergence histories of the fine and coarse
grids without GMRES are very similar, indicating that the multigrid algorithm is successful in providing
grid independent convergence rates. The addition of GMRES in the coarse grid case (initiated after 100
multigrid cycles) is seen to accelerate substantially the asymptotic convergence. As can be surmised from
this example, the addition of GMRES is most beneficial when convergence to very low tolerance levels is
desirable. Note that for the fine grid, GMRES could not be applied due to the lack of available memory.
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9. Additional High-Lift Cases. In order to demonstrate the capability of the current methodology
in handling realistic complex geometries, the flow over a complete high-lift transport configuration has been
computed. The baseline geometry is similar to the one discussed in the previous section, and described in
more detail in previous work [12]. However, the pylon and nacelle have been added to this geometry to
create a realistic full configuration high-lift case. The grid generated for this case is depicted in Figure 9.1.
This grid was generated using the VGRID program [17] and contains 2.9 million vertices and 16.9 million
cells, with a spacing at the aircraft surface skin of 1.35× 10−6 root chord lengths. A qualitative depiction of
the computed solution on this grid is given in Figure 9.2 for a freestream Mach number of 0.2, an incidence
of 10 degrees, and a Reynolds number of 1.6 million. The convergence rate for this case is very similar to
that displayed in Figure 8.1, for the 3.1 million point grid without GMRES, and is therefore not reproduced
here. The residuals were decreased by four orders of magnitude over 500 multigrid cycles, using a five level
multigrid sequence with no GMRES acceleration. This case was run on a cluster of 32 Pentium II 400 MHz
cpus, and required 5 Gbytes of memory and 5.5 hours to obtain the final solution. A complete comparison
of these computed results with experimental wind-tunnel results is planned for the near future.

The next test case involves an experimental high-lift geometry known as the Trapezoidal Wing configu-
ration. This geometry is currently the subject of an extensive experimental investigation aimed at providing
a complete set of surface and off-body flow data to enable comparison and validation of CFD codes for
high-lift flows. The configuration consists of a half-span low-aspect ratio swept wing, with a full span slat
and full span flap. The freestream Mach number is 0.2, and the Reynolds number is 19 million based on
the reference chord. A grid of 2.4 million points has been generated about this configuration, with a normal
wall spacing of 2× 10−6 chords, and is illustrated in Figure 9.3.

Fig. 9.1. Unstructured Grid for Complete Wing-Body-Nacelle-Pylon Geometry; Number of Grid Points = 2.9

million
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Fig. 9.2. Computed Pressure Contours for Flow Over Complete Wing-Body-Nacelle-Pylon High-Lift Configuration

Fig. 9.3. Unstructured Grid for Trapezoidal Wing

High-Lift Geometry; Number of Grid Points: 2.8 million

Fig. 9.4. Computed Surface Density Contours for

Flow over Trapezoidal Wing Geometry at 28 degres In-

cidence. Mach = 0.2, Reynolds = 19 million

A sample solution is depicted in Figure 9.4, as computed surface density contours on the wing. The
convergence history for the computed flow at 28 degrees incidence is given in Figure 9.5, using the multigrid
algorithm with five grid levels. A total of 4.8 Gbytes of memory and approximately 35 minutes of wall clock
time were required on a 128 cpu Origin 2000 to obtain this level of convergence.The computed lift curve
is compared with experimental data in Figure 9.6. Maximum lift occurs at approximately 34 degrees, at
a Cl value of about 2.8. Although the location of the Clmax point is relatively well predicted, the level is
somewhat lower than the experimental values. This is most likely the result of insufficient grid resolution.
A full grid refinement study along with a more detailed comparison of computed and experimental values
for this case involving surface pressures and off-body flow profiles is planned for the near future.

15



    0   100   200   300   400   500   600

Number of Cycles

 -
12

.0
0

 -
10

.0
0

  -
8.

00
  -

6.
00

  -
4.

00
  -

2.
00

   
0.

00
   

2.
00

L
og

 (
E

rr
or

)

  -
0.

20
   

0.
00

   
0.

20
   

0.
40

   
0.

60
   

0.
80

   
1.

00
   

1.
20

N
or

m
al

iz
ed

 L
if

t C
oe

ff
ic

ie
nt

Fig. 9.5. Convergence Rate for Trapezoidal Wing

Configuration at 28 degrees Incidence using Multigrid Al-

gorithm
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10. Conclusions. Table 1 illustrates the computational resources required for sample high-lift analysis
cases of medium and high resolution. These results indicate that unstructured mesh analyses involving several
million grid points are currently efficient enough to be productionalized on cost-effective mid-size parallel
computer architectures, and that very large high-resolution cases can be carried out on capable current-day
supercomputers. The current parallel implementation supports MPI, OpenMP and a two-level hybrid MPI-
OpenMP strategy for clusters of shared memory processors. On shared memory machines, the performance
of MPI alone and OpenMP alone appear to be equivalent. Otherwise, a pure MPI-based strategy has been
found to deliver better performance than hybrid combinations of MPI and OpenMP. However, these results
are necessarily dependent on hardware and vendor implementation of the parallel libraries, and evaluation
will continue as new hardware becomes available. Strategies which make use of unused system resources, such
as a run-time specified GMRES option have also been shown to increase overall efficiency. Future work will
concentrate on parallelizing the preprocessing operations such as grid partitioning and coarse level multigrid
agglomeration, in order to enable the demonstration of much larger cases on available supercomputers.
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Table 10.1

Sample Timings for Medium and Large Problems on Various Computer

Architectures. Memory Quoted in Gbytes, Solution Time Quoted in minutes

for 500 multigrid cycles

Platform Procs Memory Time

3.1 M Points, 18 M Cells

Pentium (400MHz) 32 5.5 345
Origin 2000 (250MHz) 128 5.5 75

Cray SV1 16 5.5 205

24.7 M Points, 144 M Cells

T3E-600 512 52 235
T3E-1200e 1450 52 62
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