
Interactive Search in XML Data

Guoliang Li Jianhua Feng Lizhu Zhou
Department of Computer Science and Technology, Tsinghua National Laboratory for Information

Science and Technology, Tsinghua University, Beijing 100084, China
{liguoliang,fengjh,dcszlz}@tsinghua.edu.cn

ABSTRACT
In a traditional keyword-search system in XML data, a user
composes a keyword query, submits it to the system, and
retrieves relevant subtrees. In the case where the user has
limited knowledge about the data, often the user feels “left
in the dark” when issuing queries, and has to use a try-
and-see approach for finding information. In this paper, we
study a new information-access paradigm for XML data,
called “Inks,” in which the system searches on the underly-
ing data “on the fly” as the user types in query keywords.
Inks extends existing XML keyword search methods by in-
teractively answering keyword queries. We propose effective
indices, early-termination techniques, and efficient search al-
gorithms to achieve a high interactive speed. We have imple-
mented our algorithm. The experimental results show that
Inks achieves high search efficiency and result quality.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—query formulation, search process

General Terms
Algorithms, Experimentation, Performance

Keywords
XML, Keyword Search, Interactive Search, Autocomplete

1. INTRODUCTION
Keyword search provides a simple and user-friendly query

interface to access XML data in web and scientific appli-
cations [4, 2, 8, 7, 5, 6]. In an existing XML keyword
search system, a user composes a query, submits it to the
system, and retrieves relevant answers. This information-
access paradigm requires the user to have certain knowledge
about the content of the underlying data. In the case where
the user has limited knowledge about the data, often the
user feels “left in the dark” when issuing queries, and has to
use a try-and-see approach for finding information. Many
systems are introducing various features to solve this prob-
lem. One of the commonly used methods is autocomplete,
which predicts a word or phrase that the user may type in
based on the partial string the user has typed.

In this paper, we extend autocomplete and propose an in-
teractive keyword-search method in XML data, called Inks.
Inks searches XML data on the fly as users type in queries

Copyright is held by the author/owner(s).
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

and provides a friendly interface for users exploring XML
data. Inks can significantly save users typing effort. In
contrast, one limitation of autocomplete is that the system
treats a query with multiple keywords as a single string, thus
it does not allow keywords to appear at different places. For
instance, consider the search box on Apple.com. Although
a query “itunes” can find a record “itunes wi-fi music store,”
a query “itunes music” cannot find this record, because the
two keywords appear at different places. CompleteSearch [1]
interactively searches on a set of documents. Inks extends
autocomplete and CompleteSearch to find relevant subtrees
in XML data by supporting multiple keywords.

We give an example to show how Inks works. Assume
there is an XML document that resides on a server. A user
accesses and searches the data through a Web browser. Each
keystroke that the user types invokes a query, which includes
the current string the user has typed. The browser sends the
query to the server, which computes and returns to the user
the best answers ranked by their relevancy to the query.

Assume a user types in a query “db mic” letter by letter
on the XML data in Figure 1. The string is tokenized to
keywords using delimiters. The keywords are assumed as
partial keywords, as the user may have not finished typing
the complete keyword. For the partial keywords, we would
like to know the possible words the user intends to type. We
identify a set of words with this partial keyword as a prefix.
This set of keywords are called the predicted words. For
instance, for the partial keyword “mic,” its predicted word
could be “mices,”“mich,” etc. Then based on the predicted
words, we identify the relevant subtrees in XML data that
contain the predicted words. We call these relevant subtrees
predicted answers. Apparently, Inks can significantly save
users time and efforts, since they can find answers even if
they have not finished typing all complete keywords.

2. LCA-BASED INTERACTIVE SEARCH
We propose a lowest common ancestor(LCA) based interactive-

search method. We use the semantics of exclusive LCA
(ELCA) [4] to identify relevant answers for predicted words.
We use a trie to index the tokenized words in XML data.

For a query with a single keyword, we first find the cor-
responding trie node. Then we locate the leaf descendants
of this node, and retrieve the corresponding predicted words
and the predicted XML elements on their inverted lists. For
a query with multiple keywords, we first tokenize the query
string into keywords, k1, k2, . . . , k�. For each keyword ki

(1 ≤ i ≤ �), there are multiple predicted words. Suppose
there are qi predicted words for ki, and their correspond-
ing XML element lists are Ii1 , Ii2 , . . . , Iiqi

. We fist com-

WWW 2009 MADRID! Poster Sessions: Wednesday, April 22, 2009

1063

bib

name

conf

year paper paper chair

title author bib author author

conf

papername year

title author

name year paper chair

title author author

jour

WWW 2009

S I G M O D 2008

XML IR Bob

DB Tom Mices

IR DB Tom Smith Tohn Mich

TOIS 2008

Tohn Smith Lucy Mich

Mary

XML IR

Lucy

1

2 20

3 4 5 15 19 21 22 23 27

6 7 16 17 18 24 25 268

9

10 11 12

13 14

title

Figure 1: An XML document

pute the predicted XML element lists of the partial keyword,
i.e., the union of these lists Ui = ∪qi

j=1Iij . Then, we com-
pute the predicted answers, i.e., the subtrees of ELCAs on
U1, U2, · · · , U�. We use the binary search based method to
compute ELCAs and corresponding answers [8]. We use the
tf*idf based ranking functions [4] to rank the answers.

Assume a user types in a query “db mic” letter by letter.
For query “d,” we locate the trie node for “d” and identify
predicted word “db” and predicted XML elements 13 and
16 on its leaf descendants. For query “db m,” we identify
predicted words “mices” and “mich” for“m” and predicted el-
ements 14, 18, and 26. Finally, we compute ELCAs on {13,
16} and {14, 18, 26} and get XML elements 12 and 15.

3. PROGRESSIVE SEARCH
Existing XML keyword-search algorithms [4] have two

main limitations. First, they use the default “AND” seman-
tics between input keywords. Second, they find candidate
nodes first before ranking them, and this approach is not
efficient for computing the best answers.

To address these limitations, we develop novel ranking
techniques and efficient search algorithms. In our approach,
each node on the XML tree could be potentially relevant to
a keyword query. For each keyword in the tree, we index
not only the content nodes containing the keyword, but also
those quasi content nodes whose descendants contain the
keyword. Given a keyword and node n, a pivotal node is a
content node for the keyword, which has a minimal distance
to n. The path from node n to this node is called the pivotal
path. We introduce the notion of minimal-cost tree (MCT
for short) to define the answer to the query for node n. The
minimal-cost tree is the subtree rooted at n that includes all
pivotal paths for input keywords and node n.

For example, for “DB,” we index nodes 13, 16, 12, 15, 9, 2,
8, 1, and 5, sorted by relevance. For “Tom,” we index nodes
14, 17, 12, 15, 9, 2, 8, 1, and 5. Node 13 is the pivotal
node for node 12 and “DB,” and its pivotal path is 12-13.
Node 14 is the pivotal node for node 12 and “Tom,” and its
pivotal path is 12-14. For query “DB Tom,” to identify the
top-2 answers, we first find nodes 12 and 15 based on the
index and then construct MCTs based on pivotal paths.

Now we discuss how to rank an MCT. Intuitively, we first
evaluate the relevance between node n and each input key-
word, and then combine these relevance scores as the overall
score of the MCT. We can use the idea of tf*idf to score the
relevance of the content nodes, but cannot rank a quasi con-
tent node. Given a quasi content node, we combine its piv-
otal node’s tf*idf score and the distance between the quasi
content node and its pivotal node for effective ranking.

We propose how to do progressive search in considering
“OR” predicate. In the trie index, for leaf nodes, we keep
content nodes and quasi content nodes, and corresponding
scores and pivotal paths, sorted by their scores. For each

internal node, we cache top-n relevant ones among (quasi)
content nodes in its subtree. Given a query, for each key-
word, we first locate the corresponding node on the trie.
Then, we retrieve top-n (cached) relevant elements. We use
the threshold-based algorithm [3] to identify the top-k an-
swers. If we can guarantee that we have found the top-k
answers using the cached elements, we can do early termi-
nation; otherwise, we retrieve the predicted XML elements
and use the threshold-based method to find top-k answers.

4. EXPERIMENTAL STUDY
We have implemented our method on real dataset DBLP

with the size of 470 MB. We set up a server using Apache and
FastCgi. The server was running a program implemented in
C++ using a GNU compiler. We conducted the evaluation
on a PC running a Ubuntu Linux with an Intel(R) Xeon(R)
CPU X5450@3.00 GHz CPU and 4 GB RAM. We selected
ten queries on the dataset. We first evaluate result qual-
ity by human judgement. Answer relevance of the selected
queries was judged from discussions of twenty randomly se-
lected person. Figure 2 shows the top-10 precision. We
observe that the progressive method achieves higher result
quality than LCA based methods (We implemented XRank
to generate answers for LCA based methods). This is at-
tributed to our effective ranking functions. We then evalu-
ate the server running time. Figure 3 gives the total server
time for different queries. We observe that our progressive
method achieves higher efficiency.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10

To
p-

10
 P

re
ci

si
on

 (%
)

Queries

LCA
Progressive

Figure 2: Top-10 precision

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8 9 10

El
ap

se
d

Ti
m

e
(m

s)

Queries

LCA
Progressive

Figure 3: Elapsed server time

5. ACKNOWLEDGEMENT
This work is partly supported by the National High Tech-

nology Development 863 Program of China under Grant
No.2007AA01Z152, the National Grand Fundamental Re-
search 973 Program of China under Grant No.2006CB303103,
and 2008 HP Labs Innovation Research Program.

6. REFERENCES
[1] H. Bast and I. Weber. Type less, find more: fast autocompletion

search with a succinct index. In SIGIR, pages 364–371, 2006.

[2] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. Xsearch: A
semantic search engine for xml. In VLDB, pages 45–56, 2003.

[3] R. Fagin. Fuzzy queries in multimedia database systems. In
PODS, pages 1–10, 1998.

[4] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. Xrank:
Ranked keyword search over xml documents. In SIGMOD
Conference, pages 16–27, 2003.

[5] G. Li, J. Feng, J. Wang, and L. Zhou. Effective keyword search
for valuable lcas over xml documents. In CIKM, pages 31–40,
2007.

[6] Z. Liu and Y. Chen. Identifying meaningful return information
for xml keyword search. In SIGMOD Conference, pages
329–340, 2007.

[7] C. Sun, C. Y. Chan, and A. K. Goenka. Multiway slca-based
keyword search in xml data. In WWW, pages 1043–1052, 2007.

[8] Y. Xu and Y. Papakonstantinou. Efficient keyword search for
smallest lcas in xml databases. In SIGMOD Conference, pages
537–538, 2005.

WWW 2009 MADRID! Poster Sessions: Wednesday, April 22, 2009

1064

