This item is a Paper in the Data Mining track.
- Chaudhuri, Surajit - Microsoft Research
- Ganti, Venkatesh - Microsoft Research
- Xin, Dong - Microsoft Research
Published Version
| PDF (1212Kb) |
Abstract
Tasks recognizing named entities such as products, people names, or locations from documents have recently received significant attention in the literature. Many solutions to these tasks assume the existence of reference entity tables. An important challenge that needs to be addressed in the entity extraction task is that of ascertaining whether or not a candidate string approximately matches with a named entity in a given reference table. Prior approaches have relied on string-based similarity which only compare a candidate string and an entity it matches with. In this paper, we exploit web search engines in order to define new similarity functions. We then develop efficient techniques to facilitate approximate matching in the context of our proposed similarity functions. In an extensive experimental evaluation, we demonstrate the accuracy and efficiency of our techniques.
Export Record As...
- HTML Citation
- ASCII Citation
- Resource Map
- OpenURL ContextObject
- EndNote
- BibTeX
- OpenURL ContextObject in Span
- MODS
- DIDL
- EP3 XML
- JSON
- Dublin Core
- Reference Manager
- Eprints Application Profile
- Simple Metadata
- Refer
- METS