
Smart Miner: A New Framework for
Mining Large Scale Web Usage Data

∗

Murat Ali Bayir
†

Department of Computer
Science and Engineering

University at Buffalo, SUNY
14260, Buffalo, NY, USA

mbayir@cse.buffalo.edu

Ismail Hakki Toroslu
Department of Computer
Engineering, METU NCC,
Kalkanli, Guzelyurt, TRNC,

Mersin, Turkey
toroslu@ceng.metu.edu.tr

Ahmet Cosar
Intelligent Data Analysis

Group
Department of Computer

Engineering, METU
06531, Ankara, Turkey

cosar@ceng.metu.edu.tr

Guven Fidan
AGMLAB Information

Technologies
CyberPark, Bilkent

06800, Ankara, Turkey
guven.fidan@agmlab.com

ABSTRACT

In this paper, we propose a novel framework called Smart-
Miner for web usage mining problem which uses link infor-
mation for producing accurate user sessions and frequent
navigation patterns. Unlike the simple session concepts in
the time and navigation based approaches, where sessions
are sequences of web pages requested from the server or
viewed in the browser, Smart Miner sessions are set of paths
traversed in the web graph that corresponds to users’ naviga-
tions among web pages. We have modeled session construc-
tion as a new graph problem and utilized a new algorithm,
Smart-SRA, to solve this problem efficiently. For the pat-
tern discovery phase, we have developed an efficient version
of the Apriori-All technique which uses the structure of web
graph to increase the performance. From the experiments
that we have performed on both real and simulated data,
we have observed that Smart-Miner produces at least 30%
more accurate web usage patterns than other approaches
including previous session construction methods. We have
also studied the effect of having the referrer information in
the web server logs to show that different versions of Smart-
SRA produce similar results. Our another contribution is
that we have implemented distributed version of the Smart
Miner framework by employing Map/Reduce Paradigm. We
conclude that we can efficiently process terabytes of web
server logs belonging to multiple web sites by our scalable
framework.
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1. INTRODUCTION
As in classical data mining, the aim of web mining is to

discover and retrieve useful and interesting patterns from
large web dataset [7]. In the last fifteen years, the WWW
become the largest information sources with its amazing
growing rate. All of this huge data available in the World
Wide Web can be mined mainly in three different dimen-
sions, which are web content mining, web structure mining
and web usage mining. This paper is related to the web us-
age mining which can be defined as the application of data
mining techniques to web log data in order to discover user
access patterns [9, 26]. Web usage mining has various ap-
plications such as link prediction, site reorganization and
web personalization. The success of all of these applications
is significantly related to the outcomes of web usage min-
ing process which includes session construction and frequent
navigation pattern discovery phases.

Producing accurate user sessions and navigation patterns
is not an easy task since http protocol is stateless and con-
nectionless. Also, in reactive session construction [8, 9, 23],
where it is not possible to generate web log information to
identify individual users (like cookies), all users behind a
proxy server will have the same IP number and therefore,
these users will be seen as a single client on the server side.
These problems can be handled by proactive strategies [21,
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24] by using cookies, which add client specific information
into each page request by using dynamic server page codes.
However, in order to employ proactive strategies, internal
structure of web pages must be changed either by inserting
JavaScript codes (called page tagging) or by using dynamic
server pages codes to collect session data. Nowadays, many
web site owners prefer page tagging method provided by a
third party, which works by installing Java script codes into
their web pages to collect access log data. This data is usu-
ally stored and processed on the servers of the third party.

However, for various reasons, such as security and changes
in the internal structure of web site, some site owners may
not want to use proactive approaches at all. Instead of that,
these site owners prefer to process only their raw server logs,
which contain access requests. We had received this kind
of request from several customers of AGMLAB Information
Technologies to process their huge web server logs for web
usage mining and employ complex filters over navigation
patterns for path analysis. Therefore, as part of this work
we had focused on reactive approaches and proposed a new
framework called Smart-Miner to meet this type of demands.

Smart-Miner is a novel framework including a new session
construction technique and an efficient pattern discovery al-
gorithm. Smart-Miner is also distributed framework which
employs Map/Reduce Paradigm to process very large server
logs. Our session construction algorithm, Smart-SRA is de-
signed in such a way that it can even produce sessions by us-
ing the web topology and the server logs containing only the
basic information, not even the referrer information (such as
Common Log format1), from server log files. Furthermore,
we have employed Smart-Miner on more comprehensive log
formats like Combined Log Format which also contains re-
ferrer information and thus eliminates the need for the web
topology.

Regardless of different web server logs, Smart-Miner em-
ploys two main steps to obtain frequent patterns from the log
files. In the first phase, Smart-SRA algorithm is employed
to generate user sessions containing set of paths traversed
by users on the web graph. In the second phase, an efficient
version of Apriori-All method is used to discover frequent
navigation paths from user sessions. The reason for using
Smart-SRA framework is to produce more correct sessions
that captures more realistic user behavior as well as pro-
viding good coverage for navigated paths. In particular the
followings are the contributions of this paper:

• We have implemented a full web usage mining frame-
work, Smart Miner, as commercial software which is a
sub module of our Web Analytics Service and works on
a distributed architecture. Currently final polishing of
Web Analytics Service is underway, and tests are per-
formed on it before the final deployment. During the
development of Smart-Miner framework, several novel
ideas were also used, which are listed below.

• We propose a novel session construction method, called
Smart-SRA, which models session construction process
as a graph problem and produce maximal paths tra-
versed on the web graph efficiently. Furthermore we
have implemented two different version of Smart-SRA
that can generate sessions by using only referrer infor-
mation or by using only web topology.

1http://www.w3.org/daemon/user/config/logging.html

• We introduce a strictly sequential version of Apriori-
All algorithm which exploits the structure of web graph
to improve the performance. In particular, our pattern
discovery method generates candidate patterns only
corresponding to the paths on the web graph.

• For simulating real user behavior, we have developed
an agent simulator which can be used for comparing
accuracies of different Web Usage Mining methods.
Our agent simulator is based on the random surfer
model of the page-rank algorithm. Our syntactic web
topology also obeys power law distribution property of
web graphs.

• For estimating the accuracy of alternative Web Usage
Mining methods, we have proposed geometric accuracy
model which considers both recall and precision. This
model enables us to find the best method in terms
of the number of sessions captured correctly and the
number of sessions generated by session construction
methods to capture the correct sessions

• Using both simulated and real data, we have showed
that in terms of our accuracy measure the maximal fre-
quent patterns discovered by Smart-Miner framework
is at least 30% much better than the ones obtained by
web usage mining techniques utilizing previous session
construction methods.

• We have also implemented distributed version of Smart-
Miner using Map-Reduce framework which enables us
to process huge web server logs of multiple sites simul-
taneously. Our results show that we have a significant
performance improvement in the distributed version of
the Smart-Miner. In particular, we have showed that
our run time performance increases linearly and our
framework can be scaled-up easily to process any size
of data.

This paper is organized as follows. The next section is
dedicated to the previous session construction methods and
our new method Smart-SRA. Section 3 discusses pattern
discovery problem by introducing strictly sequential Apriori-
All technique. After that, we introduce the agent simulator
which was used to evaluate different session construction
heuristics. The first subsection of the experimental results
is dedicated to the description of the accuracy metric for
comparing different web usage mining methods. In the next
two subsections, the experimental results on simulated and
real data are presented. The fourth subsection presents ex-
perimental results related to the impact of the referrer in-
formation on real case study. The fifth subsection discusses
the map/reduce version of the Smart-Miner framework and
scalability issues. Finally, we give our conclusions in section
6.

2. SESSION CONSTRUCTION

2.1 Previous Heuristics and Related Work
Before going into details of the previous work, it is better

to inform the reader with the more general definition of web
user session in the literature [8, 9, 12, 21, 23, 24].

Definition (Session): Session is a sequence of requests
made by a single user with a unique IP address on a Web
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site during a specified period of time. Each request item in
the session can be provided by either web server or cache
systems from local client or proxies.

The most basic session definition comes with Time Ori-
ented Heuristics[8, 12, 23] which are based on time limi-
tations on total session time or page-stay time. They are
divided into two categories with respect to the thresholds
they use:

• In the first one, the duration of a session is limited
with a predefined upper bound, which is usually ac-
cepted as 30 minutes according to [5]. In this type,
a new page can be appended to the current session if
the time difference with the first page doesn’t violate
total session duration time. Otherwise, a new session
is assumed to start with the new page request.

• In the second time-oriented heuristic, the time spent
on any page is limited with a threshold. This thresh-
old value is accepted as 10 minutes according to [5]. If
the timestamps of two consecutively accessed pages is
greater than the threshold, the current session is ter-
minated after the former page and a new session starts
with the latter page.

Navigation-Oriented approach [8, 9] uses the web graph
[11, 17] constructed by using hyperlinks among web pages.
In this approach, it is not necessary to have a hyperlink be-
tween every two consecutive web page requests. Let P =[P1,
P2, . . . , Pk, Pk+1, . . . , Pn] be a session containing web pages
with respect to their timestamp orders. In this session, for
every page Pk, except the initial page P1, there must be at
least one page Pj in the session which is referring to Pk and
has a smaller timestamp than Pk. If there are several pages
referring to Pk with smaller timestamps, then, among these
pages, the one with the largest timestamp is assumed to be
the page visited before Pk is viewed. Therefore, during ses-
sion construction, backward browser movements up to the
closest page referring to Pk are appended to the session.

More formally, if P =[P1, P2, . . . , Pk, Pk+1, . . . , Pn] are pages
forming a session, then, ∀k satisfying 1 < k ≤ n, ∃j such
that, T (Pk) > T (Pj) and Pj refers to Pk. During the con-
struction of a new session, if P =[P1, P2, . . . , Pk, Pk+1, . . . , Pn]
is the current session and Pn+1 is the next page request,
then, the page Pn+1 can be appended to this session as fol-
lows:

• If the Link(Pn, Pn+1) = true then the new session
becomes: P ∗ = [P1, P2, . . . , Pk, Pk+1, . . . , Pn].

• If the Link(Pn, Pn+1) = false then

– If ∃Pk∈P satisfying following properties such that:

∗ Link(Pk, Pn+1) = true, and

∗ (∀Px ∈P and T (Px) > T (Pk)) ⇒ Link(Px

, Pn+1) = false, that means If Pk is the near-
est (with the largest timestamp smaller than
the timestamp of Pn+1) page that refers to
Pn+1, then the new session becomes P ∗ =[P1,
P2, . . . , Pk, Pk+1, . . . , Pn, Pn−1, Pn−2, . . . , Pk,
Pn+1]

– If there ∄Pk ∈P satisfying the properties above,
then Pn+1 becomes the first page of a new session.

Although the session construction mentioned above are
not new, most of the recent applications [3, 13, 14, 15, 16,
18, 22] use them during session generation. The problem
with these three methods is that the application side suffer
from low performance due to the incorrect set of user ses-
sions generated. It is very important to produce high quality
sessions in session construction since the quality of the user
sessions effects the quality of the frequent patterns discov-
ered in Web Usage Mining process. Our main goal here is to
produce high quality sessions, so that it leads to more cor-
rect frequent patterns that will increase the performance in
applications like recommendation systems, personalization,
web user clustering and semantic web usage mining. In the
next subsection, we explain our new session construction
method in detail.

2.2 Smart-SRA
Smart-SRA stands for Smart Session construction Algo-

rithm which is designed to overcome deficiencies of the time
and the navigation oriented heuristics. As it is given in the
more general session definition, the session concept is also
a sequence of page requests in Smart-SRA. Moreover, the
ultimate aim of web usage mining is to determine frequent
user access paths. Thus, session construction from server
logs is an intermediate step. In order to determine frequent
user access paths, potential paths should be captured in the
user sessions. Therefore, rather than constructing just user
request sequences from server logs, Smart-SRA uses a novel
approach to construct user session as a set of paths in the
web graph where each path corresponds to users’ navigations
among web pages. That is, in Smart-SRA, server request log
sequences are processed to reconstruct web user session not
as a sequence of page requests, but, as a set of valid naviga-
tion paths. The definition of the Smart-SRA session is given
below:

Definition (Smart-SRA Session): S = {S1, S2, . . . , Sn}
is a session constructed by Smart-SRA having n paths, such
that each Sx = [P1, . . . , Pi, P i + 1, . . . , Pn]∈S, satisfies the
following conditions:

• Timestamp Ordering Rule:

– ∀i : 1 ≤i < n, T (Pi) < T (Pi + 1)

– ∀i : 1 ≤i < n, T (Pi+1) − T (Pi) < σ(page stay
time)

– T (Pn) − T (P1) < δ(session duration time)

• Topology Rule:

– ∀i : Link(Pi, Pi+1) = true

• Maximality Rule:

– ∀Sx ∈S ∄Sy such that Sy ∈S and Sx ⊂Sy

The timestamp ordering condition simply represents the
standard user session definition, so that each path in the
session constructed by Smart-SRA satisfies the requirements
of a session. The topology condition is introduced to force
each user navigation path to correspond to a path in the
web site graph. Even though a user may perform actions like
going to a previously visited page by using the back button of
the browser or follow a link from a previously visited and still
retained page, an ultimate goal we are interested in frequent
user access paths, especially access sequence from web server
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during navigation on web graph. In addition, Smart-SRA
only produces maximal paths in the session set generated.
The motivation behind maximal paths are the coverage of
possible paths they provided. We proved with maximality
property that all possible paths that can be generated from
user access sequence must be subset of at least one maximal
path.

As it is clearly seen from the above rules, Smart-SRA
uses three important properties which must be satisfied by
all paths of a session generated by Smart-SRA. It is impor-
tant that Smart-SRA eliminates the need for inserting the
backward browser movements of navigation-oriented heuris-
tic and it preserves the timestamp order of web pages. The
two main phases of Smart-SRA are explained below:

• In the first phase, the access data stream of web users
are partitioned into shorter page request sequences
called candidate sessions, by using session duration
time and page-stay time rules. The page request se-
quences obtained in this manner correspond to sessions
obtained by using both of the time-oriented heuristics
mentioned above.

• In the second phase, candidate sessions are divided
into maximal sub-sessions such that for each consecu-
tive page pair in the sequence there exists a link from
previous one to latter one. At the same time, page stay
time rule for consecutive pages is also satisfied. Since
the total session duration time is checked in the first
phase, there is no need to re-check it. However, page
stay time criteria must be checked again since the con-
secutive page pairs cannot match in the sub-sessions
with candidate session obtained after first phase. The
second phase also adds topology rule and eliminates
the need for inserting backward browser movements.
This is achieved by repeating the following steps until
all pages in a candidate session obtained after the first
phase have been processed:

 

P13 P1 

P49 

P20 P23 

P34 

 

 

 

 

 

Figure 1: An example web site topology graph

The pseudocode for the second phase of Smart-SRA is
given in Algorithm 1. In phase-2 of Smart-SRA, only max-
imal sequences are kept through the iterations. Also, only
required sessions are propagated, and thus, there is no re-
dundant session construction. Consider the Table 1, that
shows a sample web page requests sequence of a web user
obtained after the first phase of the algorithm, and Figure 1
representing the web topology graph. The application of the
inner loop (while loop) of the second phase of the session
construction algorithm is given in Table 2. For this exam-
ple, when the algorithm is executed, it discovers the three

maximal sessions showed in 4th iteration of NewSessionSet
satisfying three conditions described in 2.2.

Algorithm 1 Second Phase of Smart-SRA

1: ForEach CandSession in CandidateSessionSet
2: NewSessionSet := {}
3: while CandSession 6= []
4: TSessionSet := {}
5: TPageSet := {}
6: ForEach Pagei in CandSession
7: StartPageF lag := TRUE
8: ForEach Pagej in CandSession with j > i
9: If (Link[Pagei, Pagej ] = true) and

(TimeDiff(Pagej , Pagei) ≤ σ) Then
10: StartPageF lag := FALSE
11: End For
12: If StartPageFlag = TRUE Then
13: TPageSet := TPageSet ∪ {Pagei}
14: // Remove the selected pages from the current seq.
15: CandSession := CandSession − TPageSet
16: If NewSessionSet = {} Then
17: ForEach Pagei in TPageSet
18: TSessionSet := TSessionSet ∪ {[Pagei]}
19: Else
20: ForEach Pagei in TPageSet
21: ForEach Sessionj in NewSessionSet
22: If (Link[Last(Sessionj), Pagei] = true) and

(TimeDiff(Last(Sessionj), Pagei) ≤ σ) Then
23: TSession := Sessionj

24: TSession.mark := UNEXTENDED
25: TSession := TSession • Pagei // Append
26: TSessionSet := TSessionSet ∪ {TSession}
27: Sessionj .mark := EXTENDED
28: End If
29: End For
30: End For
31: End If
32: ForEach Sessionj in NewSessionSet
33: If Sessionj .mark 6= EXTENDED Then
34: TSessionSet := TSessionSet ∪ {Sessionj}
35: End If
36: End For
37: NewSessionSet := TSessionSet
38: End While
39: End For

Table 1: Example Web Page Request Sequence
Page P1 P20 P13 P49 P34 P23

TimeStamp 0 6 9 12 14 15

2.3 Extension to Referrer Case
We have also extended Smart-SRA to work with other

log formats which has referrer information. In order to
use this information, Smart-SRA keeps the id of referrer
with the current page id in the candidate session. The ex-
tension to referrer case is very easy since we only need to
change the topology check operation in the 9th and 22nd

lines of the Algorithm 1. Instead of checking link existence
if(Link[Pagej , Pagei] = true), referrer check if(Pagei.
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Table 2: Evaluation of Example Session by Smart-
SRA

Iteration 1 2

CandidateSession
[P1, P20, P13, [P20, P13, P49,
P49, P34, P23] P34, P23]

TempPageSet {P1} {P20, P13}

NewSessionSet
[P1, P20]

[P1] [P1, P13]
Iteration 3 4

CandidateSession [P49, P34, P23] [P23]
TempPageSet {P49, P34} {P23}

NewSessionSet
[P1, P13, P34] [P1, P13, P34, P23]
[P1, P13, P49] [P1, P13, P49, P23]

[P1, P20] [P1, P20, P23]

referrer = Pagej) is used in this new version of Smart-
SRA. Obviously referrer case produce less number of ses-
sions than original Smart-SRA since each page has exactly
one referrer. However, for original Smart-SRA, we have con-
sidered restricted topology containing only pages within the
candidate session instead of using the whole topology. This
property enables original version of Smart-SRA to produce
small number of sessions as the referrer based version also.
In the experimental results section, we will show that there
is no significant difference in terms of the number of gener-
ated sessions for both versions.

3. DISCOVERING PATTERNS
Sequential pattern discovery is the next phase of the Web

Usage Mining. In this phase, frequent access patterns are
determined from reconstructed sessions. There are several
algorithms in the literature for the sequential pattern min-
ing, such as GSP [25], SPADE [28] and PrefixSpan [20] etc.
Although it is not the most recent or the most efficient one,
we have used a modified version of the AprioriAll [1] tech-
nique. AprioriAll is very suitable for our problem since we
can make it very efficient by pruning most of the candi-
date sequences generated at each iteration step of the al-
gorithm. This pruning can be done because of the topo-
logical constraint requirement mentioned above, that is for
every subsequent pair of pages in a sequence the former one
must have a hyperlink to the latter one. We will call this
new version of AprioriAll as Sequential Apriori Algorithm.
In particular, we prune majority of the possible sequences
in the search space during candidate sequence generation.
Therefore, our focus is on the quality of discovered web us-
age patterns rather than performance of sequential pattern
mining methods. Another different constraint in our domain
is that a string matching constraint should be satisfied be-
tween two sequences in order to have support relation. To
illustrate; the sequence < 1, 2, 3 > does not support < 1, 3 >
although 3 comes after 1 in both of them. However, sequence
< 1, 3, 2 > supports < 1, 3 >. A session S supports a pattern
P if and only if P is a subsequence of S not violating string
matching constraint. We call all the sessions supporting a
pattern as its support set.

Sequential AprioriAll Algorithm (Algorithm 2): In
the beginning, each page with sufficient support forms a
length-1 supported pattern. Then, in the main step, for each
k value greater than 1 and up to the maximum reconstructed
session length, supported patterns (patterns satisfying the

Algorithm 2 Sequential Apriori

1: Input: Minimum support frequency: δ, Reconstructed
Sessions: S

2: Topology information as matrix: Link, The Set of all
Web Pages: P

3: Output: Set of maximal frequent patterns: Max
4: Procedure sequentialApriori (δ, S, Link, P)
5: L1 := {} // Set of frequent length-1 patterns
6: For i:=1 to |P | do
7: L1 := L1 ∪ [Pi] | If Support([Pi],S) > δ
8: For k = 1 to N − 1 do
9: If Lk = then

10: Halt
11: Else
12: Lk+1 := {}
13: For Each Ii ∈ Lk

14: For Each Pj ∈ P
15: If Link[Last(Ii), Pj ] = true then
16: T := Ii • Pj // Append Pj to Ii

17: If Support(T, S) > δ then
18: T.maximal := TRUE
19: Ii.maximal := FALSE // since extended
20: V := [T2, T3,. . . , T|T |] // drop first element
21: if V ∈ Lk then
22: V.maximal := FALSE
23: Lk+1 := Lk+1 ∪ {T}
24: End For
25: End For
26: End If
27: End For
28: Max := {}
29: For k := 1 to N − 1 do
30: Max := Max ∪ {S | S ∈ Lk and S.maximal =

true }
31: End For
32: End Procedure

support condition) with length k+1 are constructed by using
the supported patterns with length k and length 1 as follows:

• If the last page of the length-k pattern has a link to
the page of the length-1 pattern, then by appending
that page length-k+1 candidate pattern is generated.

• If the support of the length-k+1 pattern is greater than
the required support, it becomes a supported pattern.
In addition, the new length-k+1 pattern becomes max-
imal, and the extended length-k pattern and the ap-
pended length-1 pattern become non-maximal.

• If the length-k pattern obtained from the new length-
(k+1) pattern by dropping its first element was marked
as maximal in the previous iteration, it also becomes
non-maximal.

• At some k value, if no new supported pattern is con-
structed, the iteration halts.

Notice that in the sequential apriori algorithm, the pat-
terns with length-k are joined with the patterns with length-
1 by considering the topology rule. This step significantly
eliminates many unnecessary candidate patterns before even
calculating their supports, and thus increases the perfor-
mance drastically. In addition, since the definition of the
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support automatically controls the timestamp ordering rule
with the sub-session check, all discovered patterns will sat-
isfy both the topology and the timestamp rules, which are
very important in web usage mining.

Support(I, S) =
|{Si|∀i I is substring of Si}|

|S|
(1)

An auxiliary function Support(I, S) determines whether
a given pattern (I) has sufficient support from the given
set of reconstructed user sessions (S). Support of a pattern
I is defined as a ratio between the numbers of constructed
sessions supporting the pattern I, the number of all sessions.
Clearly, the support for each candidate pattern at step-n
can be calculated only by one scan through the transaction
database by keeping candidate sessions in hashmap.

4. AGENT SIMULATOR
Our agent simulator first randomly generates a typical

web page topology which preserves power law property of
web graphs as it is stated for graph generators [6]. After
that, it simulates a user agent that accesses this domain
from its client site and navigates (randomly) in this domain
like a random surfer in pagerank [19] by using the parame-
ters described below. In this way, we will have full knowl-
edge about the sessions beforehand, and later we can use
any heuristic to process user access log data to discover the
sessions. Then, we can evaluate how successful that heuris-
tic was in reconstructing the known sessions. While gen-
erating a session, our agent simulator eliminates web user
navigations provided via a client’s local cache. Since the
simulator knows both the referrer of each page (i.e., from
which page a hyperlink is used to access to this page) and
the full navigation history at the client side, it can determine
navigation requests that are served by the web server, and
those served from the client/proxy cache. Each heuristic is
executed using the server side log file as input, and produces
its own sessions. After all of the sessions are discovered by
the heuristics, sequential Apriori-All technique is applied on
these sessions to determine frequent navigation paths.

The following parameters are used for simulating naviga-
tion behaviors of a web user:

Session Termination Probability (STP): STP is the
probability of terminating session.

Link from Previous pages Probability (LPP): LPP
is the probability of referring next page from one of the previ-
ously accessed pages except the most recently accessed one.
This parameter is used to allow the generation of backward
movements from browser.

Link from Current page Probability (LPC): LPC is
the probability of referring next page from the most recently
visited page.

New Initial page Probability (NIP): NIP represents
the probability of selecting one of the starting pages of a web
site during the navigation, thus starting a new page request
sequence in the same domain. This behavior also represents
browser actions to view new page without using links on the
web pages like using bookmarks or writing new address to
bar.

Our user model is similar to the random surfer model of
the page rank algorithm [19]. In the original page rank algo-
rithm, the web user terminates surfing with closing his/her
browser or writing a new page URL to the address bar of

browser with a damping factor, d (probability value between
0 and 1). Also, with probability 1−d the user continues nav-
igation by randomly clicking links on the current page. Our
agent simulator generates web user requests such that with
probability (1− d) a web user can select a link from current
page (LCP) or press the back button (LPP). If this condition
happens, the web user selects the next page from the links
of the previous pages or from the links of the current page
according to LPP and LPC values. Also with the probabil-
ity d, web user can terminate the session (STP) or jump to
a new start page (NIP) by typing its URL into the address
bar of the browser. Corresponding actions are simulated
with probabilities STP and NIP.

5. EXPERIMENTAL RESULTS
The first subsection is dedicated to the introduction of

the accuracy metric for comparing different web usage min-
ing methods. In the next two subsections, we compare the
accuracies of the maximal frequent patterns obtained from
sessions of Smart-SRA, navigation oriented and time ori-
ented heuristics. In the fourth subsection, we have com-
pared the referrer based version and the original version of
Smart-SRA on web server logs of ceng.metu.edu.tr domain
(Department of Computer Engineering at Middle East Tech-
nical University) which has more than 1500 unique sessions
and nearly 5K web page requests every day. In the last sub-
section, we discuss distributed processing of web usage data
on map/reduce framework.

5.1 Accuracy Metric
In the experiments mentioned in section 5.2 and 5.3, we

have compared the most popular 3 heuristics with the Smart-
SRA with respect to their accuracy performance. As it is
mentioned in previous sections, sessions are processed by
the sequential apriori algorithm after they are constructed
by one of these four heuristics. Sequential apriori technique
is also applied to original sessions generated by the agent
simulator. Since, we know the frequent maximal patterns of
the agent simulator (MPA), which correspond to the correct
frequent patterns, we can determine the accuracies of differ-
ent heuristics (AH stands for the accuracy of a heuristic H)
by using the maximal frequent patterns generated by these
heuristics (MPH) as follows:

RECH =
|MPA ∩ MPH |

|MPA|
PREH =

|MPA ∩ MPH |

|MPH |
(2)

AH =
√

(RECH ∗ PREH) (3)

Here RECH is the recall for heuristic H namely the ratio
of the number of correct patterns captured by heuristic H
over the number of all correct maximal patterns. PREH is
the precision for heuristic H namely the ratio of the number
of correct patterns captured by heuristics H over the number
of all maximal patterns generated by heuristic H. We have
defined accuracy AH of heuristic H as a geometric mean of
recall and precision for that heuristic.

In order to balance the trade off between recall and pre-
cision, it is possible to define arithmetic mean or any lin-
ear function of these two variables as our accuracy metric.
Since arithmetic mean is defined as (RECH + PREH)/2,
it may still produce incorrectly high accuracies whenever
one of the RECH or PREH is very large and the other one
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Figure 2: Experiments on Simulated Data

is very small. We are seeking for accuracy to be high if
and only if both of them are high. The accuracy should
be small even if one of these values is very large and the
other one is very small. In general, due to the problems
mentioned in arithmetic mean, any weighted linear func-
tions using d ∗ PREH + (1 − d) ∗ RECH(d ∈ [0, 1]) also
fail. The geometric mean function [2, 4] solves all problems
mentioned above. For obtaining high accuracy both preci-
sion and recall must be high. Therefore, we decided to use
geometric mean as our accuracy metric thought the rest of
this paper.

5.2 Accuracy Comparison on Simulated Data
In the first set of experiments, we have used agent simu-

lator to produce syntactic data. The agent simulator first
creates a random web topology with the parameters given
in Table 3. There are works in the literature related with
these parameters, and the average number of web pages in
a web site is reported as 441 [27]. Also, the average number
of out degrees of any web page is determined as 7.2 in [17].
Therefore, we decided to choose the ranges of parameters as
in Table 3.

Table 3: Web Site and User Parameters
Parameter Range

Number of web pages (nodes) in topology [10, 1000]
Number of Users [1000, 10000]

After the initializing steps of simulation mentioned above,
we have studied the accuracy of alternative web usage min-
ing processes (which contains the session construction phase
followed by application of the sequential version of Apriori-
All algorithm for frequent patter discovery). In this work, we
compare the accuracies of the three web usage mining pro-
cesses employing Smart-SRA, Navigation Oriented Heuris-
tic and Time Oriented Heuristic using total session duration
time threshold. We didn’t plot the results for Time Oriented
Heuristics using page stay time threshold since its accuracy
is very close to Time Oriented Heuristics using total session
duration time.

The main parameters used in our experiments are two
probabilistic behavior metrics, namely the ratios (LPP/LPC)
and (NIP/STP ). We used 7 different values of these two
parameters, namely the values 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and
10.0 That is, 0.1 for (LPP/LPC) means, the probability of
Link from Current Page behavior is ten times as the proba-

bility of Link From Previous Page behavior. Similarly, 10 for
(LPP/LPC) means, the probability of LPP behavior is ten
times as the probability of LPC behavior. Thus, with these
7 values we cover different distributions of LPP/LPC ratios.
Since we have the same values for NIP/STP ratio also, in
total we generate 49 different combinations of all of these
4 parameters. For each one of these 49 different cases, our
agent simulator is executed 10 times with randomly chosen
number of users, out degrees of web pages, and the number
of web page parameters from the ranges in Table 3. Also
for each test run of the agent simulator, we have executed
pattern discovery phase with the 5 different support values
from 0.001 to 0.010 (which are 0.001, 0.0025, 0.005, 0.0075,
and 0.01). Thus, for each of the 49 different combinations
of (NIP/STP, LPP/LPC), we have 50 different test runs
(10 random different runs of agent simulator times 5 runs
for each support values).

After that we take the average of 50 runs for each of the
(NIP/STP, LPP/LPC) combination. As a result, we ob-
tain single accuracy value for each of the 49 combinations
which can be represented as a 7x7 matrix having varying
LPP/LPC values on rows and varying NIP/STP values
on columns. In order to provide complete visualization of
all possible parameters, we plot the accuracy results of our
experiments on syntactic data in 3 different views. In Fig-
ure 2(a), we plot the average accuracy of the 7 rows which
corresponds to average accuracies with respect to varying
NIP/STP values. Figure 2(b) contains the reverse result
of the former one, since in this one we take the average of
each column and plot the accuracies with respect to varying
LPP/LPC values. The last figure (Figure 2(c)) shows the
average of all 49 values for each session construction method
in terms of accuracy, recall and precision values.

On the average, the maximal patterns obtained from Smart-
SRAs sessions are at least 30% more accurate than pat-
terns obtained from sessions of Time and Navigation Ori-
ented Heuristics. Another observation is that increasing
NIP/STP and LPP/LPC decreases the accuracy of all
heuristics. This is due to the fact that LPP and NIP cause
more complex behaviors in the user sessions than STP and
LPC. Remember that LPP is the probability referring next
page from one of the previously accessed pages except the
most recently accessed one. High LPP means that web users
tend to choose the next page by using links from previously
accessed web pages. Clearly this behavior is more difficult
to predict than choosing next page from the most recently
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Figure 3: Experiments on Real Data

accessed page since in the latter case, the order is the same
in the web server logs. The same argument also applies
to NIP, since increasing NIP leads to web users to trigger
new navigation sequence by writing new URL into the ad-
dress bar or using external links from different sources such
as search engines or bookmarks. However, increasing STP
leads to web users to generate simple sessions that are termi-
nated early with less number of pages. This also decreases
the probability of having NIP and LPP conditions which
enables heuristics to capture sessions easily.

5.3 Accuracy Comparision on Real Data
We have also evaluated the accuracy performance of both

of the heuristics on real data captured from AGMLAB’s
company web site (www.agmlab.com). We tracked the ac-
tions of web users between March 2008 and June 2008. In
this period of time, the number of visitors is 3801 which is
calculated by using a 30 min session time-out. The web site
for our case study contains 10 web pages and the link graph
is densely connected.

For tracking client side actions of web users, the internal
structure of web pages are changed by inserting an action
tracking program into them. This program captures all ac-
tions of web users by using browsers on the client-side. These
actions are stored as a text in a local cookie. When the user
performs any page view action via browser, the information
in local cookies is sent to server. In the server side, the cookie
information is recorded to a log file by requested dynamic
server page. By this way, we capture all of the information
about the user on both the client and the server sides.

The information in our cookies represents all actions of
users on the client side. Also, in the sequence extracted from
the cookie, the first instance of each requested page stands
for access log information in the server side. To illustrate; if
the cookie contains sequential page view as [1, 2, 6, 3, 2, 1,
5, 3, 2] it is easily seen that bold ones are the first instances
of requested web pages and these are provided by the web
server and recorded to the access log file. So, the log file
contains the sequence [1, 2, 6, 3, 5]. The access logs files
generated from cookies in this manner is used as an input
to each heuristic.

We have also extracted the real session sequences from the
cookie information. For the example mentioned above, the
second visit of page 2 ([1, 2, 6, 3, 2, 1, 5, 3, 2]) is provided
via browser cache, so our first sequence becomes [1, 2, 6, 3].
The first instance of page 5 comes after initial sequence [1,
2, 6, 3] and it is the page highlighted as bold ([1, 2, 6, 3,

2, 1, 5, 3, 2]). Since the referrer of page 5 is page 1 in the
cookies, the second sequence becomes [1, 5]. The browser
provides page 1 from the local cache. Since page 1 is the first
page of the sequence, there is no referrer of page 1 when it is
requested from the server. Notice that the agent simulator
produces sessions having forward references which are used
for requesting web pages from the server. The user clicks a
link on page 1 and requests page 5 from the server. However,
this is not same for [2, 1] shown as bold, ([1, 2, 6, 3, 2, 1, 5,
3, 2]). Finally, our real session contains two sequences {[1, 2,
6, 3], [1, 5]}. After all real sessions are extracted; maximal
patterns are discovered by using Sequential Apriori method.
After that, we evaluate the accuracy for each heuristic by
using the methods described in the previous section.

For the evaluation of maximal patterns, we have used five
different support values in the range [0.01, 0.1] with the
values 0.01, 0.025, 0.05, 0.075, and 0.1. Then, we have cal-
culated the average accuracy for these five different support
values. The average accuracies for each heuristic on real
data are given in Figure 3(a). As it is seen from the figure,
Smart-SRA is much better than previous heuristics. While
Smart-SRA has accuracy near 60%, the navigation oriented
heuristic has accuracy near 25% and time oriented heuristic
has accuracy near 27%. From the experimental results on
our real data we can also observe several drawbacks of pre-
vious heuristics, which were also reflected in these results.
First, time-oriented heuristics don’t consider link informa-
tion. In most of the cases, a web user navigates between
pages by using hyperlinks in the pages. When the link infor-
mation is not used, the sessions become an unrelated set of
accessed web pages without navigation paths. In navigation-
oriented approach, backward browser movements becomes a
major problem, since the rest of the session always corre-
sponds to forward movements in web topology graph. Also,
Navigation oriented heuristics only consider the nearest page
for navigating a new page which current one does not refer.

5.4 Experimental Results on Large Web Site
In this section, we provide experimental results over web

server logs of ceng.metu.edu.tr for analyzing effect of the re-
ferrer information, seqeunce length and accuracy. Our test
domain is visited by more than 1500 unique visitors request-
ing about 5K web pages daily. We have used six month
server logs (which contains nearly 1M web page requests) for
our experiments and focused on determining the effects of
the referrer information on the performance of two versions
of Smart-SRA, namely the one that uses the referrer infor-
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Figure 4: Experiments on Large Scale Web Usage Data

mation and the one that does not. For comparison, we have
measured elapsed time for generating user sessions and the
number of sequences generated by two session construction
algorithms. In these experiments, we ignored the candidate
sessions having only one web page since there is no need to
use any method to extract maximal sessions from them. We
have also ignored the output sequences having single page
since these sequences do not corresponds to paths in the web
topology.

In the first experiment, we have determined the number
of navigation sequences and run time for generating these
sequences for varying log sizes. Starting from the first 10K
web page requests of access logs, we have compared the two
versions of Smart-SRA on 7 different input sizes up to 1M
web page requests. The run time comparision of these two
method is given in Figure 3(b). Actually the number of se-
quences generated graph is exactly same as run time graph.
Thefore, we only give run time graph. As it is seen from
these figures, referrer based version of smart-SRA is slightly
better than the original version in terms of the execution
time since it produces less sessions. However, it should be
noticed that there is not a significant difference between the
two versions of Smart-SRA since the original Smart-SRA
uses the restricted web topology which prevents the explo-
sion in the number of total sessions generated. As it is easily
observed from the sequence length distribution graph (Fig-
ure 3(c)), the length distribution of sequences generated by
these two methods are very similar.

In the last experiment, we have measured the accuracy of
the navigation patterns obtained from the sessions generated
by the original version of Smart-SRA and the referrer based
version of Smart-SRA. Here, we assume that the navigation
patterns obtained from referred based version as the correct
set. Under this assumption, the accuracy of the original
Smart-SRA is determined as 69% percent, which is also 35%
better than the time and the navigation oriented heuristics.

5.5 Distributed Processing of Web Usage Data
We have implemented a distributed version of Smart-Miner

framework using Map/Reduce [10] programming model which
runs on AGMLAB’s computer cluster having more than 100
computers (Figure 4(a)). With the help of Map/Reduce
model, currently, we are processing web server logs of multi-
ple web sites which are uploaded to our system daily. Map/
Reduce [10] is a programming paradigm which expresses a
large distributed computation as a sequence of distributed
operations called map and reduce tasks on data sets of key/
value pairs. In order to employ Map/Reduce model, dur-

ing the computation, both input and internal data sources
should be represented as (key, value) pairs.

Due to the space limitations we will skip the details of the
Map/Reduce version of our algorithms. However, the idea is
quite simple for both session construction and pattern dis-
covery phases. We have a single Map/Reduce job for session
construction, the map phase of which hashes the IP address
and domain name (since we process logs of multiple web
sites) as key from single access logs and delivers all access
logs belonging to same IP and domain name pair to the same
reducers. In this way, we accumulate all access records of sin-
gle IP belonging to same domain on single reducer machine.
After that, we run the Algorithm 1 on single reducer ma-
chine. The pattern discovery phase is trickier. Unlike session
construction case, we have implemented two Map/Reduce
jobs for pattern discovery. The first job creates candidate
sequences and the latter one calculates frequency of candi-
date sequences as well as eliminating both infrequent and
non maximal patterns. Each job is repeated for each step-n
of the Algorithm 2 until all maximal patterns are discovered.
The offline framework continues to run in this manner until
it generates all of the maximal patterns. The most impor-
tant point here is that, we calculate the frequency of each
candidate pattern in a distributed manner by partitioning
the session database into small blocks which are processed by
different map/reduce nodes. Each map/reduce node counts
the local frequency of candidate pattern over its repository
and local results are merged for finding global frequency of
each candidate patterns. We measured the run time perfor-
mance of our cluster (up to 50 nodes) by generating frequent
navigation sequences of 1 month data (about 100 GB) from
only most popular web sites analyzed by AGMLAB Infor-
mation Technologies. As it is seen from Figure 4(b), our
framework is capable of processing 100 GB data in 5 minutes
with 50 nodes. In the second experiment, we have processed
6 months usage data of several web sites belongs to different
customers of AGMLAB. In this experiment (Figure 4(c)),
we have used 50 nodes and varied the the total input size
from 100GB to 10 TB. The results show that our frame-
work is capable of processing 10TB usage data in one day
(14 hours) with 50 nodes. In fact, our scalable architecture
shows similar curve like in the theoretical limit (run time
proportional to the input size or number of nodes) which
implies that we can process any size of data by increasing
number of nodes in the cluster.
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6. CONCLUSION AND FUTURE WORK
In this paper we introduced the new web usage mining

framework, Smart-Miner, that we have developed as a sub
module of commercial service. The framework contains sev-
eral novel contributions to different web usage mining prob-
lems, such as session construction, frequent user pattern dis-
covery and large scale web usage data processing. We have
proved the quality and benefits of our new framework with
several experiments by using syntactic data to large scale
real web user data. We have also showed that our frame-
work produce better result than previous methods and it is
shown that our framework can process any size of web usage
data with its scalable architecture.

As it is mentioned above, Smart-Miner framework is part
of our Web Analytics Service. As a future work, we are
planning to improve Web Analytics Service by intelligent ap-
plications that works on frequent navigation patterns gener-
ated by Smart-Miner. Specifically, we are planning to design
a decision support system which will execute user defined fil-
ters over frequent access patterns for advertisement or fraud
pattern analysis.
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