
RESTful Service Design

Cesare Pautasso
Faculty of Informatics
University of Lugano, Switzerland

c.pautasso@ieee.org
http://www.pautasso.info

©2009 - Cesare Pautasso, Erik Wilde 3

REST Design Constraints

1. Resource Identification URI
2. Uniform Interface

GET, PUT, DELETE, POST
(HEAD, OPTIONS...)

3. Self-Describing Messages
4. Hypermedia Driving Application State
5. Stateless Interactions

©2009 - Cesare Pautasso, Erik Wilde 4

REST Design Constraints

1. Resource Identification
2. Uniform Interface

GET, PUT, DELETE, POST
(HEAD, OPTIONS...)

3. Self-Describing Messages
4. Hypermedia Driving Application State
5. Stateless Interactions

©2009 - Cesare Pautasso, Erik Wilde 5

REST Design - Outline

• REST Architectural Elements
• Design Methodology

• Is URI Design part of REST?
• Simple Doodle Service Example
• Design Tips

• Understanding GET vs. POST vs. PUT
• Multiple Representations

• Content-Type Negotiation
• Exception Handling

• Idempotent vs. Unsafe
• Dealing with Concurrency

• Stateful or Stateless?
• Some REST AntiPatterns

©2009 - Cesare Pautasso, Erik Wilde 6

REST Architectural Elements

User Agent Origin Server

Cache

Proxy

Gateway

Connector (HTTP)

Client/Server Layered CacheStateless Communication

©2009 - Cesare Pautasso, Erik Wilde 7

Basic Setup

User Agent Origin Server

HTTP

Caching
User Agent

Origin Server

HTTP

User Agent Caching
Origin Server

HTTP

Adding Caching

Caching
User Agent

Caching
Origin Server

HTTP

©2009 - Cesare Pautasso, Erik Wilde 8

Proxy or Gateway?

Client Proxy
HTTP Origin Server

HTTP

Client Gateway
HTTP

Origin Server
HTTP

Intermediaries forward (and may translate) requests and responses

A proxy is chosen by the Client (for caching, or access control)

The use of a gateway (or reverse proxy) is imposed by the server

©2009 - Cesare Pautasso, Erik Wilde 9

Design Methodology

1. Identify resources to be exposed as
services (e.g., yearly risk report, book
catalog, purchase order, open bugs,
polls and votes)

2. Model relationships (e.g., containment,
reference, state transitions) between
resources with hyperlinks that can be
followed to get more details (or perform
state transitions)

3. Define “nice” URIs to address the
resources

4. Understand what it means to do a GET,
POST, PUT, DELETE for each resource
(and whether it is allowed or not)

5. Design and document resource
representations

6. Implement and deploy on Web server
7. Test with a Web browser

/soap

?/order

/book

/client

/balance

/loan

D
ELETE

PO
ST

PU
T

G
ET

©2009 - Cesare Pautasso, Erik Wilde 10

Design Space

4 Methods (Fixed)
N

 R
es

ou
rc

es
 (V

ar
ia

bl
e)

M Representations (Variable)

©2009 - Cesare Pautasso, Erik Wilde 11

URI - Uniform Resource Identifier

 Internet Standard for resource naming and identification
(originally from 1994, revised until 2005)

 Examples:
http://tools.ietf.org/html/rfc3986

https://www.google.ch/search?q=rest&start=10#1

 REST does not advocate the use of “nice” URIs
 In most HTTP stacks URIs cannot have arbitrary length (4Kb)

URI Scheme Authority Path

Query Fragment

©2009 - Cesare Pautasso, Erik Wilde 12

What is a “nice” URI?

http://map.search.ch/lugano

http://maps.google.com/maps?f=q&hl=en&q=lugano,
+switzerland&layer=&ie=UTF8&z=12&om=1&iwloc=addr

http://maps.google.com/lugano

A RESTful service is much more than just a set of nice URIs

©2009 - Cesare Pautasso, Erik Wilde 13

URI Design Guidelines
 Prefer Nouns to Verbs
 Keep your URIs short
 Follow a “positional”

parameter-passing scheme
(instead of the
key=value&p=v encoding)

 URI postfixes can be used to
specify the content type

 Do not change URIs
 Use redirection if you really

need to change them

GET /book?isbn=24&action=delete
DELETE /book/24

 Note: REST URIs are opaque
identifiers that are meant to
be discovered by following
hyperlinks and not
constructed by the client

Warning: URI Templates
introduce coupling between
client and server

©2009 - Cesare Pautasso, Erik Wilde 14

Simple Doodle API Example Design

1. Resources:
polls and votes

2. Containment Relationship:

?/poll/{id}/vote/{id}

/poll/{id}/vote

/poll/{id}

/poll

D
ELETE

PO
ST

PU
T

G
ET

poll

{id1}

3. URIs embed IDs of “child”
instance resources

4. POST on the container is used to
create child resources

5. PUT/DELETE for updating and
removing child resources

{id2}

{id3}

vote

{id4}

{id5}

©2009 - Cesare Pautasso, Erik Wilde 15

Simple Doodle API Example
1. Creating a poll

(transfer the state of a new poll on the Doodle service)

2. Reading a poll
(transfer the state of the poll from the Doodle service)

POST /poll
<options>A,B,C</options>

201 Created
Location: /poll/090331x

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes href=“/vote”/>

/poll
/poll/090331x
/poll/090331x/vote

©2009 - Cesare Pautasso, Erik Wilde 16

Simple Doodle API Example
 Participating in a poll by creating a new vote sub-resource

POST /poll/090331x/vote
<name>C. Pautasso</name>
<choice>B</choice>

201 Created
Location:
/poll/090331x/vote/1

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes><vote id=“1”>
<name>C. Pautasso</name>
<choice>B</choice>
</vote></votes>

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2009 - Cesare Pautasso, Erik Wilde 17

Simple Doodle API Example
 Existing votes can be updated (access control headers not shown)

PUT /poll/090331x/vote/1
<name>C. Pautasso</name>
<choice>C</choice>

200 OK

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes><vote id=“/1”>
<name>C. Pautasso</name>
<choice>C</choice>
</vote></votes>

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2009 - Cesare Pautasso, Erik Wilde 18

Simple Doodle API Example
 Polls can be deleted once a decision has been made

DELETE /poll/090331x

200 OK

GET /poll/090331x

404 Not Found

More info on the real Doodle API: http://doodle.com/xsd1/RESTfulDoodle.pdf

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2009 - Cesare Pautasso, Erik Wilde 19

Uniform Interface Principle

DELETE

UPDATE

READ

CREATE

CRUD

Clear a resource,
after the URI is no

longer valid

Initialize or update the
state of a resource

at the given URI

Retrieve the current
state of the resource

Create a
sub resource

DELETE

PUT

GET

POST

REST

©2009 - Cesare Pautasso, Erik Wilde 20

POST vs. GET

 GET is a read-only
operation. It can be
repeated without affecting
the state of the resource
(idempotent) and can be
cached

 POST is a read-write
operation and may
change the state of the
resource and provoke side
effects on the server.
Web browsers warn
you when refreshing
a page generated
with POST

©2009 - Cesare Pautasso, Erik Wilde 21

POST vs. PUT
What is the right way of creating resources (initialize their state)?
PUT /resource/{id}
201 Created
Problem: How to ensure resource {id} is unique?
(Resources can be created by multiple clients concurrently)
Solution 1: let the client choose a unique id (e.g., GUID)

POST /resource
301 Moved Permanently
Location: /resource/{id}
Solution 2: let the server compute the unique id
Problem: Duplicate instances may be created if requests are
repeated due to unreliable communication

©2009 - Cesare Pautasso, Erik Wilde 22

Content Negotation (Conneg)
Negotiating the message format does not require to send more

messages (the added flexibility comes for free)
GET /resource
Accept: text/html, application/xml,

application/json
1. The client lists the set of understood formats (MIME types)

200 OK
Content-Type: application/json
2. The server chooses the most appropriate one for the reply

©2009 - Cesare Pautasso, Erik Wilde 23

Forced Content Negotation
The generic URI supports content negotiation
GET /resource
Accept: text/html, application/xml,

application/json

The specific URI points to a specific representation format using
the postfix (extension)

GET /resource.html
GET /resource.xml
GET /resource.json

Warning: This is a conventional practice, not a standard.
What happens if the resource cannot be represented in the

requested format?

©2009 - Cesare Pautasso, Erik Wilde 24

Exception Handling

100 Continue
200 OK
201 Created
202 Accepted
203 Non-Authoritative
204 No Content
205 Reset Content
206 Partial Content
300 Multiple Choices
301 Moved Permanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
307 Temporary Redirect

400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Timeout
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Long
415 Unsupported Media Type
416 Requested Range Not Satisfiable
417 Expectation Failed

500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout
505 HTTP Version Not Supported

Learn to use HTTP Standard Status Codes

4xx Client’s fault

5xx Server’s fault

©2009 - Cesare Pautasso, Erik Wilde 25

Idempotent vs. Unsafe
 Unsafe requests modify the state of the

server and cannot be repeated without
additional (unwanted) effects:

Withdraw(200$) //unsafe

Deposit(200$) //unsafe

 Unsafe requests require special
handling in case of exceptional
situations (e.g., state reconciliation)

POST /order/x/payment

 In some cases the API can be
redesigned to use idempotent
operations:

B = GetBalance() //safe

B = B + 200$ //local

SetBalance(B) //idempotent

 Idempotent requests can
be processed multiple
times without side-effects

GET /book

PUT /order/x

DELETE /order/y

 If something goes wrong
(server down, server
internal error), the
request can be simply
replayed until the server
is back up again

 Safe requests are
idempotent requests
which do not modify the
state of the server

GET /book

©2009 - Cesare Pautasso, Erik Wilde 26

Dealing with Concurrency

GET /balance

200 OK
ETag: 26

PUT /balance
ETag: 26

200 OK
ETag: 27

 Breaking down the
API into a set of
idempotent requests
helps to deal with
temporary failures.

 But what about if
another client
concurrently modifies
the state of the
resource we are
about to update?

/balance

©2009 - Cesare Pautasso, Erik Wilde 27

Dealing with Concurrency

GET /balance

200 OK
ETag: 26

PUT /balance
ETag: 26

200 OK
ETag: 27

PUT /balance
ETag: 26

409 Conflict

The 409 status code can be used to inform a client that his
request would render the state of the resource inconsistent

/balance

©2009 - Cesare Pautasso, Erik Wilde 28

Blocking or Non-Blocking?
 HTTP is a synchronous interaction protocol.

However, it does not need to be blocking.

POST /slow

202 Accepted
Location: x

GET /slow/x

200 OK

 A Long running
request may time out.

 The server may
answer it with 202
Accepted providing a
URI from which the
response can be
retrieved later.

 Problem: how often
should the client do
the polling?

/slow

©2009 - Cesare Pautasso, Erik Wilde 29

Antipatterns - REST vs. HTTP

REST HTTP

RESTful HTTP

REST

“RPC”

©2009 - Cesare Pautasso, Erik Wilde 30

Antipatterns – HTTP as a tunnel
 Tunnel through one HTTP Method

GET /api?method=addCustomer&name=Wilde
GET /api?method=deleteCustomer&id=42
GET /api?method=getCustomerName&id=42
GET /api?method=findCustomers&name=Wilde*

 Everything through GET
• Advantage: Easy to test from a Browser address bar

(the “action” is represented in the resource URI)
• Problem: GET should only be used for read-only

(= idempotent and safe) requests.
What happens if you bookmark one of those links?

• Limitation: Requests can only send up to approx. 4KB of data
(414 Request-URI Too Long)

©2009 - Cesare Pautasso, Erik Wilde 31

Antipatterns – HTTP as a tunnel
 Tunnel through one HTTP Method
 Everything through POST

• Advantage: Can upload/download an arbitrary amount of data
(this is what SOAP or XML-RPC do)

• Problem: POST is not idempotent and is unsafe (cannot cache
and should only be used for “dangerous” requests)

POST /service/endpoint

<soap:Envelope>
<soap:Body>

<findCustomers>
<name>Wilde*</name>

</findCustomers>
</soap:Body>

</soap:Envelope>

Is this a resource?

©2009 - Cesare Pautasso, Erik Wilde 32

Antipatterns – Cookies

 Are Cookies RESTful or not?
 It depends. REST is about stateless communication

(without establishing any session between the client and
the server)

1. Cookies can also be self-contained
 carry all the information required to interpret them with

every request/response
2. Cookies contain references to the application state

(not maintained as a resource)
 they only carry the so-called “session-key”
 Advantage: less data to transfer
 Disadvantage: the request messages are no longer self-

contained as they refer to some context that the server
needs to maintain. Also, some garbage collection
mechanism for cleaning up inactive sessions is required.
More expensive to scale-up the server.

©2009 - Cesare Pautasso, Erik Wilde 33

Stateless or Stateful?
 RESTful Web services are not stateless. The very name of

“Representational State Transfer” is centered around how to
deal with state in a distributed system.

Resource State
 The state of resources

captures the persistent state
of the service.

 This state can be accessed
by clients under different
representations

 The client manipulates the
state of resources using the
uniform interface CRUD-like
semantics (PUT, DELETE,
POST)

Client State
 The client interacts with

resources by “navigating
hyperlinks” and its state
captures the current position
in the hypertext.

 The server may influence the
state transitions of the client
by sending different
representations (containing
hyperlinks to be followed) in
response to GET requests

©2009 - Cesare Pautasso, Erik Wilde 34

Stateless or Stateful?
 RESTful Web services are not stateless. The very name of

“Representational State Transfer” is centered around how to
deal with state in a distributed system.

GET /resource

21

GET /1

200 OK
<xml>

/resource

/1
<xml>

Resource StateClient State

©2009 - Cesare Pautasso, Erik Wilde 35

Leonard Richardson,
Sam Ruby,
RESTful Web Services,
O’Reilly, May 2007

Raj Balasubramanians, Benjamin
Carlyle,Thomas Erl, Cesare Pautasso,
SOA with REST,
Prentice Hall, End of 2009

