
REST vs WS-* Comparison

Cesare Pautasso
Faculty of Informatics
University of Lugano, Switzerland

c.pautasso@ieee.org
http://www.pautasso.info

©2009 - Cesare Pautasso, Erik Wilde 2

Web Sites (1992)

HTTP

HTMLWeb
Browser

Web
Server

(HTTP)

SOAP

ServerClient XML
WSDL

WS-* Web Services (2000)

©2009 - Cesare Pautasso, Erik Wilde 3

RESTful Web Services (2007)

Client HTTP

PO
-XM

L

RSS/Atom

JSO
N

Web
Server

WADL

WS-* Web Services (2000)

(HTTP)

SOAP

ServerClient XML
WSDL

©2009 - Cesare Pautasso, Erik Wilde 4

WS-* Standards Stack

©2009 - Cesare Pautasso, Erik Wilde 5

XML

URI HTTP

MIME

JSON

SSL/TLS

RSS Atom

RESTful Web Services Standards Stack

AtomPub

©2009 - Cesare Pautasso, Erik Wilde 6

Can we really compare WS-* vs. REST?

WS-* REST

©2009 - Cesare Pautasso, Erik Wilde 7

WS-*

Middleware
Interoperability

Standards

REST

Architectural
style for
the Web

Can we really compare WS-* vs. REST?

©2009 - Cesare Pautasso, Erik Wilde 8

How to compare?

WS-*

Middleware
Interoperability

Standards

REST

Architectural
style for
the Web

Architectural

Decision Modeling

©2009 - Cesare Pautasso, Erik Wilde 9

Architectural Decisions

 Architectural decisions
capture the main design
issues and the rationale
behind a chosen
technical solution

 The choice between
REST vs. WS-* is an
important architectural
decision for
Web service design

 Architectural decisions
affect one another

Architectural Decision:
Programming Language

Architecture Alternatives:
1. Java
2. C#
3. C++
4. C
5. Eiffel
6. Ruby
7. …

Rationale

©2009 - Cesare Pautasso, Erik Wilde 10

Application Integration Styles

File
Transfer

Shared
Database

Message BusRemote
Procedure

Call

WS-*REST/HTTP

Technology Platform

©2009 - Cesare Pautasso, Erik Wilde 11

Related Decisions (WS-*)

File
Transfer

Shared
Database

Message BusRemote
Procedure

Call

WS-*REST/HTTP

©2009 - Cesare Pautasso, Erik Wilde 12

Related Decisions (RPC)

File
Transfer

Shared
Database

Message BusRemote
Procedure

Call

WS-*HTTPRESTful
HTTP

©2009 - Cesare Pautasso, Erik Wilde 13

Decision Space Overview

©2009 - Cesare Pautasso, Erik Wilde 14

21 Decisions and 64 alternatives
Classified by level of abstraction:
• 3 Architectural Principles
• 9 Conceptual Decisions
• 9 Technology-level Decisions

Decisions help us to measure the
complexity implied by the choice of

REST or WS-*

Decision Space Overview

©2009 - Cesare Pautasso, Erik Wilde 15

Architectural Principles

1. Protocol Layering
• HTTP = Application-level Protocol (REST)
• HTTP = Transport-level Protocol (WS-*)

2. Dealing with Heterogeneity
3. Loose Coupling

Cesare Pautasso and Erik Wilde. Why is the Web Loosely
Coupled? A Multi-Faceted Metric for Service Design,
WWW2009 (Wednesday 16:30)

Cesare Pautasso and Erik Wilde. Why is the Web Loosely
Coupled? A Multi-Faceted Metric for Service Design,
WWW2009 (Wednesday 16:30)

©2009 - Cesare Pautasso, Erik Wilde 16

RESTful Web Service Example

HTTP Client

(Web Browser)

Web Server

Application Server Database

GET /book?ISBN=222
SELECT *

FROM books
WHERE isbn=222

POST /order INSERT
INTO orders301 Location: /order/612

PUT /order/612 UPDATE orders
WHERE id=612

©2009 - Cesare Pautasso, Erik Wilde 17

WS-* Service Example
(from REST perspective)

HTTP Client

(Stub Object)

Web Server

Application Server

POST /soap/endpoint

POST /soap/endpoint

POST /soap/endpoint

return getBook(222)

return new Order()

order.setCustomer(x)

Web Service

Implementation

©2009 - Cesare Pautasso, Erik Wilde 18

Protocol Layering
“The Web is the universe of
globally accessible information”
(Tim Berners Lee)
 Applications should publish

their data on the Web
(through URI)

“The Web is the universal
(tunneling) transport for
messages”
 Applications get a chance

to interact but they remain
“outside of the Web”

Application

(Many) Resource URI

HTTP
POST

Application

1 Endpoint URI

HTTP
GET

HTTP
PUT

HTTP
DEL

HTTP
POST

SOAP (WS-*)

MQ…SMTP

AtomPub JSON …POX

©2009 - Cesare Pautasso, Erik Wilde 19

Dealing with Heterogeneity

CICS
IMS

P
icture from

 E
ric N

ew
com

er, IO
N

A

 Enterprise Computing

HTTP

 Web Applications

 Enable Cooperation Enable Integration

©2009 - Cesare Pautasso, Erik Wilde 20

Managing State

 REST provides explicit state
transitions
 Communication is stateless*
 Resources contain data and

hyperlinks representing valid
state transitions

 Clients maintain application
state correctly by navigating
hyperlinks

 Techniques for adding session to
HTTP:
 Cookies (HTTP Headers)
 URI Re-writing
 Hidden Form Fields

 SOAP services have implicit state
transitions
 Servers may maintain

conversation state across
multiple message exchanges

 Messages contain only data
(but do not include information
about valid state transitions)

 Clients maintain state by guessing
the state machine of the service

 Techniques for adding session to
SOAP:
 Session Headers

(non standard)
 WS-Resource Framework

(HTTP on top of SOAP on top of
HTTP)

(*) Each client request to the server must contain all information needed to understand the request, without referring to any
stored context on the server. Of course the server stores the state of its resources, shared by all clients.

©2009 - Cesare Pautasso, Erik Wilde 21

What about service description?

 REST relies on human
readable documentation that
defines requests URIs and
responses (XML, JSON)

 Interacting with the service
means hours of testing and
debugging URIs manually
built as parameter
combinations. (Is is it really
that simpler building URIs by
hand?)

 Why do we need strongly
typed SOAP messages if both
sides already agree on the
content?

 WADL proposed Nov. 2006
 XML Forms enough?

 Client stubs can be built from
WSDL descriptions in most
programming languages

 Strong typing
 Each service publishes its

own interface with different
semantics

 WSDL 1.1 (entire port type
can be bound to HTTP GET or
HTTP POST or SOAP/HTTP
POST or other protocols)

 WSDL 2.0 (more flexible,
each operation can choose
whether to use GET or POST)

©2009 - Cesare Pautasso, Erik Wilde 22

What about security?

 REST security is all about
HTTPS (HTTP + SSL/TLS)

 Proven track record
(SSL1.0 from 1994)

 HTTP Basic Authentication
(RFC 2617, 1999
RFC 1945, 1996)

 Secure, point to point
communication
(Authentication, Integrity
and Encryption)

 SOAP security extensions
defined by WS-Security
(from 2004)

 XML Encryption (2002)
 XML Signature (2001)
 Implementations are

starting to appear now
 Full interoperability moot
 Performance?

 Secure, end-to-end
communication – Self-
protecting SOAP messages
(does not require HTTPS)

©2009 - Cesare Pautasso, Erik Wilde 23

What about asynchronous reliable
messaging?

 Although HTTP is a
synchronous protocol,
it can be used to “simulate” a
message queue.

POST /queue

202 Accepted
Location:

/queue/message/1230213

GET /queue/message/1230213

DELETE /queue/message/1230213

 SOAP messages can be
transferred using
asynchronous transport
protocols and APIs
(like JMS, MQ, …)

 WS-Addressing can be used
to define transport-
independent endpoint
references

 WS-ReliableExchange defines
a protocol for reliable
message delivery based on
SOAP headers for message
identification and
acknowledgement

©2009 - Cesare Pautasso, Erik Wilde 24

What about composition?

 The basic REST design
elements do not take
composition into account

 WS-BPEL is the standard
Web service composition
language. Business process
models are used to specify
how a collection of services
is orchestrated into a
composite service

 Can we apply WS-BPEL to
RESTful services?

User Agent Origin Server

HTTP

?

Origin Server

Origin Server

User Agent

HTTP

HTTP

HTTP

©2009 - Cesare Pautasso, Erik Wilde 25

RESTful Composition Example

©2009 - Cesare Pautasso, Erik Wilde 26

WSDL 2.0 HTTP Binding can wrap RESTful Web Services

BPEL and WSDL 2.0

R

WSDL 2.0BPEL PUT

DELETE

GET

POST

Operations

HTTP Binding

Op_1
Op_2
Op_3
Op_4

...

<Invoke Op_1>

<Invoke Op_2>

...

<Invoke Op_3>

<Invoke Op_4>

...

Op_1 R PUT
Op_2 R GET
Op_3 R POST
Op_4 R DELETE

Op URI Method

R PUT
R GET
R POST
R DELETE

(WS-BPEL 2.0 does not support WSDL 2.0)

©2009 - Cesare Pautasso, Erik Wilde 27

Make REST interaction primitives first-class language
constructs of BPEL

BPEL for REST

R

BPEL for REST PUT

DELETE

GET

POST

...

<Put R>

<Get R>

...

<Post R>

<Delete R>

...

<Put R>

<Get R>

<Post R>

<Delete R>

©2009 - Cesare Pautasso, Erik Wilde 28

 Dynamically publish resources from BPEL
processes and handle client requests

BPEL for REST
<Resource P>

<onGet>

<Put R>

<Get S>

</onGet>

<Post R>

<Delete S>

</onDelete>

</Resource>

<onDelete>

R

PUT

DELETE

GET

POST

S

PUT

DELETE

GET

POST

P

PUT

DELETE

GET

POST

BPEL for REST – Resource Block

©2009 - Cesare Pautasso, Erik Wilde 29

Measuring Complexity

 Why is REST perceived to be simpler?
 Architectural Decisions give a

quantitative measure of the complexity
of an architectural design space:
 Total number of decisions
 For each decision, number of alternative options
 For each alternative option, estimate the effort

3527Alternatives
1417Decisions

WS-*REST

Decisions with 1 or more alternative options

©2009 - Cesare Pautasso, Erik Wilde 30

Measuring Complexity

3527Alternatives
1417Decisions

WS-*REST

Decisions with 1 or more alternative options

3216Alternatives

125Decisions
WS-*REST

Decisions with more than 1 alternative options

©2009 - Cesare Pautasso, Erik Wilde 31

Measuring Complexity

3216Alternatives

125Decisions
WS-*REST

Decisions with more than 1 alternative options

• URI Design
• Resource Interaction Semantics

• Payload Format
• Service Description
• Service Composition

©2009 - Cesare Pautasso, Erik Wilde 32

Measuring Complexity

3216Alternatives

125Decisions
WS-*REST

Decisions with more than 1 alternative options

212Decisions

WS-*REST

Decisions with only 1 alternative option

©2009 - Cesare Pautasso, Erik Wilde 33

Measuring Complexity

212Decisions

WS-*REST

Decisions with only 1 alternative option

• Payload Format
• Data Representation Modeling

©2009 - Cesare Pautasso, Erik Wilde 34

Measuring Effort

212Decisions

WS-*REST

Decisions with only 1 alternative option

05Do-it-yourself
Alternatives

WS-*REST

Decisions with only do-it-yourself alternatives

©2009 - Cesare Pautasso, Erik Wilde 35

Measuring Effort

05Do-it-yourself
Alternatives

WS-*REST

Decisions with only do-it-yourself alternatives

• Resource Identification
• Resource Relationship

• Reliability
• Transactions
• Service Discovery

©2009 - Cesare Pautasso, Erik Wilde 36

Freedom of Choice
Freedom from Choice

©2009 - Cesare Pautasso, Erik Wilde 37

Comparison Summary

 Architectural Decisions measure complexity implied
by alternative technologies

 REST simplicity = freedom from choice
 5 decisions require to choose among 16 alternatives
 12 decisions are already taken (but 5 are do-it-yourself)

 WS-* complexity = freedom of choice
 12 decisions require to choose among 32 alternatives
 2 decisions are already taken (SOAP, WSDL+XSD)

©2009 - Cesare Pautasso, Erik Wilde 38

Comparison Conclusion

 You should focus on whatever solution gets
the job done and try to avoid being religious
about any specific architectures or
technologies.

 WS-* has strengths and weaknesses and will
be highly suitable to some applications and
positively terrible for others.

 Likewise with REST.
 The decision of which to use depends entirely

on the application requirements and
constraints.

 We hope this comparison will help you make
the right choice.

©2009 - Cesare Pautasso, Erik Wilde 39

References

 Cesare Pautasso, Olaf Zimmermann, Frank Leymann,
RESTful Web Services vs. Big Web Services: Making the Right
Architectural Decision, Proc. of the 17th International World Wide
Web Conference (WWW2008), Bejing, China, April 2008.

 Cesare Pautasso and Erik Wilde. Why is the Web Loosely Coupled?
A Multi-Faceted Metric for Service Design, Proc of the 18th
International World Wide Web Conference (WWW2009), Madrid,
Spain, April 2009.

 Cesare Pautasso, BPEL for REST, Proc. of the 6th International
Conference on Business Process Management (BPM 2008), Milan,
Italy, September 2008.

 Cesare Pautasso, Gustavo Alonso: From Web Service Composition
to Megaprogramming In: Proceedings of the 5th VLDB Workshop on
Technologies for E-Services (TES-04), Toronto, Canada, August
2004.

©2009 - Cesare Pautasso, Erik Wilde 40

Leonard Richardson,
Sam Ruby,
RESTful Web Services,
O’Reilly, May 2007

Raj Balasubramanians, Benjamin
Carlyle,Thomas Erl, Cesare Pautasso,
SOA with REST,
Prentice Hall, End of 2009

