
Fast Dynamic Reranking in Large Graphs

Purnamrita Sarkar
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

psarkar@cs.cmu.edu

Andrew W. Moore
Google Inc.

Pittsburgh, PA 15213
awm@google.com

ABSTRACT
In this paper we consider the problem of re-ranking search
results by incorporating user feedback. We present a graph
theoretic measure for discriminating irrelevant results from
relevant results using a few labeled examples provided by
the user. The key intuition is that nodes relatively closer
(in graph topology) to the relevant nodes than the irrele-
vant nodes are more likely to be relevant. We present a
simple sampling algorithm to evaluate this measure at spe-
cific nodes of interest, and an efficient branch and bound
algorithm to compute the top k nodes from the entire graph
under this measure. On quantifiable prediction tasks the
introduced measure outperforms other diffusion-based prox-
imity measures which take only the positive relevance feed-
back into account. On the Entity-Relation graph built from
the authors and papers of the entire DBLP citation corpus
(1.4 million nodes and 2.2 million edges) our branch and
bound algorithm takes about 1.5 seconds to retrieve the top
10 nodes w.r.t. this measure with 10 labeled nodes.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and
Retrieval

General Terms
Algorithms, Experimentation

Keywords
search, random walk, harmonic function, semi-supervised
learning

1. INTRODUCTION
With the ever-increasing popularity of information net-

works such as the web, citation networks (e.g. DBLP),
friendship graphs (e.g. Facebook) or movie recommenda-
tion networks (e.g. Netflix) graph-based search algorithms
are gaining importance. Standard search algorithms rank
the nodes in the graph based on their relevance to the given
query. However because of the complex structure of these
networks, the top ranked nodes are often not relevant to the
user’s query. One common example is where the query en-
tered is ambiguous. For example, in a DBLP graph different
authors with the same name are often treated as one entity,
which completely confuses standard search algorithms. As-
sume that the user is allowed to enter positive and negative

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

relevance feedback on the top k nodes. The question is how
to quickly produce a reranked list of results by incorporat-
ing this feedback? Since these networks are very large, the
algorithm has to be extremely fast and memory efficient.

One solution would be to compute a proximity measure
from the relevant nodes. TrustRank ([8]) uses personalized
pagerank [9] from the trusted nodes to discriminate between
good and spammy nodes in the web. Recent work [10] on
ranking refinement uses boosting to learn the new ranking
function simultaneously from the base ranking function and
the user feedback. The problem with the first approach is
that it does not take the negative information into account,
and query-time computation of personalized pagerank is still
an active area of research. The second approach is quadratic
in the number of entities to be ranked and is not appropriate
for quick reranking.

Harmonic functions for graph-based semi-supervised learn-
ing were introduced in [19]. Given a few positive and nega-
tive labels the harmonic function value at any node is simply
the probability of hitting a positive label before a negative
label. Variations of the same measure have also been suc-
cessfully used for web-spam detection [11], automated image
colorization [13] and image segmentation with user feedback
[7]. Similar to much spreading activation work, the main
intuition is that nodes close in the graph topology will have
similar labels.

The standard tool for computing harmonic functions ei-
ther involves sparse solvers for graph Laplacians or iterative
matrix operations. There are algorithms which solve undi-
rected graph Laplacians in near-linear time [17]. However
these results do not apply to directed graphs. The main rea-
son these approaches are not applicable to dynamic rerank-
ing is that they are computed once for the entire graph with
static positive and negative labels. We want fast local com-
putation for labels generated by users in real time.

In this paper we propose a short term variation of har-
monic functions. In Entity-Relation graphs, or social net-
works, we are interested in information flow in shorter range.
Hence we compute the probability of hitting a positive node
before a negative node in T steps, where T is set to be
around 10. This is similar to [11], where the harmonic rank
is computed with respect to a random walk with a restart
probability. We present two different algorithms for com-
puting the above function. One is a simple sampling algo-
rithm, and the other is a dynamic neighborhood expansion
technique which provably returns approximate top k nodes
under this measure. Both of these are useful for two differ-
ent and complementary scenarios. If one had a candidate set
of nodes to be ranked based on the feedback, the sampling

WWW 2009 MADRID! Track: Data Mining / Session: Graph Algorithms

31

technique is appropriate to compute function values at the
specific nodes. On the other hand, the second algorithm is
more appropriate for computing top k nodes in this measure
for a given set of labels.

We used quantifiable entity disambiguation tasks in the
DBLP corpus to evaluate the proposed measure and its con-
ditional version (probability of hitting a positive node before
a negative node given the random walk hits some label in
T steps). We compare our results with two standard dif-
fusion based proximity measures from the positive nodes in
the labeled set: a) expected time to hit a node from the pos-
itive labels in T steps, and b) personalized pagerank from
the positive labels. Our results indicate that the measure
which combines information from both the positive and neg-
ative feedback performs much better than proximity mea-
sures which use only positive relevance information. We also
show timing results on state of the art paper-author-citation
graph (not containing explicit word nodes) built from DBLP.
The branch and bound algorithm takes about 1.5 seconds to
compute top 10 nodes for 10 labels on average.

The paper is organized as follows: we briefly describe re-
lated work in section 2, and motivate the reranking prob-
lem in section 3. In section 4 we define the discriminative
measures (conditional and unconditional probabilities), and
illustrate their behavior on toy examples. Section 5 con-
tains the proposed algorithms. In section 6 we present our
experimental results.

2. PREVIOUS WORK
In this paper we present a short term variation of har-

monic functions on graphs. We show the effectiveness of
these functions for semi-supervised classification and also
present efficient algorithms to compute them. We first briefly
describe previous applications of harmonic functions for semi-
supervised learning. Then we discuss semi-supervised learn-
ing algorithms for web-spam detection and conclude with al-
gorithms devised to incorporate user feedback for improved
ranking and information retrieval.

Harmonic functions on graphs have been successfully used
for graph-based semi-supervised learning algorithms. A har-
monic function value at a node in a graph is an average over
the values of its neighbors. This property leads to label-
smoothness over the graph topology. Previous applications
include standard machine learning classification tasks (the
newsgroup and digits datasets) [19], image coloring [13] and
image segmentation [7].

In the first application, a sparse graph is built using fea-
ture similarity between documents or digits, and then a
subset of labels are used to compute the harmonic func-
tion. The other two applications use a graph-representation
of an image frame, where two neighboring pixels share a
strong connection if they have similar color, intensity or tex-
ture. The colorization application involves adding color to a
monochrome image or movie. An artist annotates the image
with a few colored scribbles and the indicated color is prop-
agated to produce a fully colored image. The segmentation
example uses user-defined labels for different segments and
quickly propagates the information to produce high-quality
segmentation of the image. All of the above examples rely
on the same intuition: neighboring nodes in a graph should
have similar labels.

A closer look at the formulation of a harmonic function
(equation 1) shows that it can be computed using linear

solvers for graph Laplacians. There has been much work on
near-linear-time solvers [17] for undirected graph Laplacians.
Recently a linear-work parallel algorithm was proposed for
solving planar Laplacians [12]. Unfortunately these do not
even apply to our directed graph setting.

There have been a number of learning algorithms to aid
spam detection in the web, which is an extremely impor-
tant task. These algorithms can be roughly divided into
two classes: content-based methods, and graph based ap-
proaches. The content-based approaches ([14]) focus on the
content of the webpage, e.g. number of words in the page
and page title, amount of anchor text, fraction of visible con-
tent etc. to separate a spam-page from a non-spam page.

Graph-based algorithms look at the link structure of the
web to classify web-spam. We will briefly discuss two of
these. TrustRank [8] uses a similar idea as personalized
pagerank computation [9]. The main idea behind personal-
ized pagerank is to compute a stationary distribution of the
Markov chain defined on the graph which is biased towards
a set of nodes. At each step the random walk can be reset to
this starting distribution with a small teleportation prob-
ability. In pagerank [4] this distribution is uniform over all
webpages. In content-based keyword search applications in
databases [3] this distribution is over the documents contain-
ing the searched keywords. In TrustRank this distribution
contains a selected set of reputable web-pages.

Harmonic ranking has been successfully used for spam de-
tection in [11]. The authors build an anchor set of nodes,
and compute a harmonic function with restart. For the good
anchor nodes the authors use the harmonic ranking where as
for the bad anchors they use a forward-propagation from the
anchor set to identify other nodes with similar labels. Note
that although the authors only used the harmonic rank with
a homogeneous anchor set (all good or all bad nodes), when
the anchor set consists of both good and bad anchor nodes,
the harmonic rank is very similar to our formulation. Other
approaches include algorithms which combine both of the
above, i.e. classify the spam pages using content and graph-
based features. The authors in [1] optimize an objective
function which minimizes the error on the labeled examples
with an additional constraint of regularizing the function
over the graph Laplacian. The idea is to penalize unsmooth
functions over the graph-topology.

All these algorithms are used to classify a static set of
spammy vs. good webpages. However in order to rerank
nodes where the user-feedback is changing quickly these will
have to be recomputed over the entire graph.

Ranking refinement using boosting was used by [10], where
the main idea is to boost a base ranking function using the
set of labeled examples. Every instance (a movie or a doc-
ument) is defined by a set of features, and a base ranking
algorithm outputs a ranking function from these objects.
There is also additional label information obtained from user
feedback which can be encoded as ranking preference. The
goal is to combine these two and learn a ranking function
which is consistent with both the base ranker and the user
labels. The authors show that user-feedback considerably
improves the performance of the base-ranking algorithm.
A straight-forward use of the RankBoost algorithm[6] on
the weak learners’ ranking will give rise to an O(n4) algo-
rithm. However the authors reduce the complexity of the al-
gorithm to O(n2), i.e. quadratic in the number of instances
to rank. Note that this is still expensive when the candidate

WWW 2009 MADRID! Track: Data Mining / Session: Graph Algorithms

32

set of instances to rank is large or the labeled set is changing
over time and hence is not appropriate for producing quick
reranking of results.

3. MOTIVATION
The graph in figure 1 is an example Entity-Relation graph

constructed from the papers of an author awm in DBLP.
There are three types of nodes: words (leftmost), papers
(middle), and authors (rightmost). Words are connected to
a paper if they appear on the title of the paper. Papers
are connected via citation and authors are connected to a
paper if they wrote the paper. We only show words which
appear at least twice in this figure. For this example we also
stemmed the word nodes, however for the experiments on
the DBLP corpus we do not do so.

Careful examination of this graph will show that author
awm has written papers on detecting disease outbreaks, and
other topics including bayesian network structure learning,
and link mining. Papers 4-10 contain the words significant,
disease, outbreak, food, safety, scan, statistic, monitoring
etc. Papers 0, 1, 2, 3, and 12 contain the words asteroid,
tractable, link, completion, group, structure, learning. Both
of these groups contain common words, e.g. algorithm, de-
tection, bayesian, network, pattern, spatial.

Let us assume a user searches for “awm”, “disease” and
“bayesian”. This will return papers on disease outbreaks,
and also other irrelevant papers from the other group of pa-
pers containing the word “bayesian” by author awm. Lets
assume that the user is shown four papers. The user is un-
sure about the relevance of first result, and hence chooses
not to label it, marks the second two (about disease out-
breaks) as relevant and the fourth (about bayesian network
structure learning) as irrelevant. A node is ranked high if in
a 10-step random walk starting from it the probability of hit-
ting a relevant node before an irrelevant one is large. Table
1 contains the results before and after incorporating user
feedback. Note that the papers on spatial scan or spatial
cluster detection are related to disease outbreaks, although
the titles do not contain either of the words. They also come
up to the top of the list. Also after incorporating the user
feedback the list in the bottom panel shows a clear division
between the relevant and irrelevant documents.

Figure 1: ER-graph for co-authors and papers of
author awm

4. HARMONIC FUNCTIONS ON GRAPHS,
AND T-STEP VARIATIONS

For the sake of clarity we will only describe a two class
semi-supervised problem. However this can be easily gener-
alized to a multiclass classification setting. Consider a graph
with vertices V , among which U , and L are respectively the
set of unlabeled and labeled nodes. A labeled node i has
label yi ∈ {0, 1}. Also from now on, we will interchangeably
use ‘positive’ for label ‘1’ and ‘negative’ for label ‘0’.

A harmonic function is defined as f : V → R which has
fixed values at the given labeled points and is smooth over
the graph topology. More specifically the harmonic property
means that the function value at an unlabeled node is the
average of function values at the neighbors. Let w(i, j) be
the weight on edge < i, j >, d(i) be the weighted degree of
node i, i.e. d(i) =

P

j wij .

f(i) =

P

j wijf(j)

d(i)
, i ∈ U

For a directed graph wij might not equal wji, hence d(i) will
denote the weighted out-degree of node i. Let’s assume that
for the labeled nodes we assign f(i) = 1, if i has label 1, and
0 otherwise. This can also be expressed as f = Pf where
P is a row stochastic transition matrix of the graph. We
now divide P into four blocks by grouping the labeled and
unlabeled points together. f is grouped into fu (unlabeled)
and fl (labeled nodes with fixed values). This gives:

fu = (I − Puu)−1Pulfl (1)

The above function represents the probability of hitting a
label ‘1’ before a label ‘0’. We can easily generalize this
to compute the probability of hitting ‘0’ before ‘1’, using
a one vs. all encoding of labels. In order to compute the
probability of hitting label y ∈ {0, 1} before label 1 − y we
set fl(i) = 1, if node i has label y and 0 otherwise. By
using a 2 column representation of f , where the yth column
(f(:, y)) encodes the label y nodes, we can compute fu(i, y)
for y ∈ {0, 1} simultaneously from equation (1). In other
words f(i, y) is the probability of hitting a node with label
y node before a node with label 1 − y.

In this paper we will use a T -step random walk. fT (i, 1)
denotes the probability of hitting a label 1 node before a
label 0 node in a T step random walk starting at node i.
As T approaches infinity fT approaches f . Note that in
a strongly connected graph f(i, 1) + f(i, 0) = 1, since in
infinite number of steps a random walk will hit some label.
However in a T step random walk that is not the case.

Effectively f is the result of an infinite length markov
chain, and is sensitive to long range paths. In this section
we will briefly demonstrate how that could influence the
classification obtained from f . We will use a simple way
to classify a node: assign label 1 to it, if f(i, 1) > f(i, 0),
and similarly for fT . Figure 2 has an undirected random
graph of 100 nodes, where each node is assigned random x
and y coordinates, and nodes close in the Euclidean space
share a link with high probability. We used T = 10. The
relatively larger nodes in the graph are labeled. We classify
the rest of the nodes based on their f values (2A.) and their
fT values (2B.). The resulting classifications are color-coded
(red squares:label 1) and (green circles: label 0).

In Figure 2A note that the nodes within the blue hand-
marked area are labeled green by f , whereas they are marked

WWW 2009 MADRID! Track: Data Mining / Session: Graph Algorithms

33

Table 1: Paper nodes from figure 1 ranked before and after incorporating user feedback (the papers annotated
with “⇒”were labeled by an user. A“X” implies that the paper is relevant to the query, whereas a “×” implies
that it was irrelevant.)

Search results prior to user feedback relevance

A Bayesian Scan Statistic X

⇒Bayesian Network Anomaly Pattern Detection for Disease Outbreaks. X

⇒Algorithm for Early Disease Outbreak Detection X

⇒Optimal Reinsertion: Bayesian Network Structure Learning. ×
Tractable Learning of Large Bayesian Network Structures ×
Detecting Significant Multidimensional Spatial Clusters. X

A Fast Multi-Resolution Method for Detection of Significant Spatial Disease Clusters. X

Detection of Emerging Spatial Cluster X

A Multiple Tree Algorithm for the Efficient Association of Asteroid Observations. ×
Variable KD-Tree Algorithms for Spatial Pattern Search and Discovery ×

Comparison of Statistical Machine Learning Algorithm on Link Completion Tasks ×
Monitoring Food Safety by Detecting Patterns in Consumer Complaints X

Tractable Algorithm for Group Detection and Link Mining in Large Datasets ×

Search results after incorporating user feedback relevance

Bayesian Network Anomaly Pattern Detection for Disease Outbreaks. X

A Fast Multi-Resolution Method for Detection of Significant Spatial Disease Clusters. X

Algorithm for Early Disease Outbreak Detection X

A Bayesian Scan Statistic X

Detecting Significant Multidimensional Spatial Clusters. X

Detection of Emerging Spatial Cluster X

Monitoring Food Safety by Detecting Patterns in Consumer Complaints X

Tractable Algorithm for Group Detection and Link Mining in Large Datasets ×
Comparison of Statistical Machine Learning Algorithm on Link Completion Tasks ×

Variable KD-Tree Algorithms for Spatial Pattern Search and Discovery ×
A Multiple Tree Algorithm for the Efficient Association of Asteroid Observations. ×

Tractable Learning of Large Bayesian Network Structures ×
Optimal Reinsertion: Bayesian Network Structure Learning. ×

(A) (B)

Figure 2: A. Classification obtained from f , B. Classification obtained from f T . A circle implies label ‘0’, and
a square label ‘1’. The two nodes with larger size are the two labeled nodes. The hand-marked area in (A)
shows the difference in classification obtained from the infinite and short term random walks.

red by the short term random walk fT . This shows the dif-
ference in behavior of the measures arising from long and
short term random walks.

4.1 Unconditional vs. Conditional Measures
We have mentioned that fT (i, 1)+fT (i, 0) can be strictly

less than 1 for small T . This is because of the fact that
the random walk might not hit any label in T steps. This
observation leads to a new measure gT .

gT (i, 1) =
fT (i, 1)

fT (i, 0) + fT (i, 1)
(2)

g can also be viewed as the probability of hitting a label 1
node before a label 0 node in T steps, conditioned on the

fact that the random walk hits some label in T steps. This
measure clearly has more information than unconditioned
fT . However it can be misleading for the nodes where the
probability of hitting any label in T steps, i.e. fT (i, 0) +
fT (i, 1) is very small. In order to alleviate this, we smooth
the above with a small factor λ, which works like a prior
belief on hitting a positive or negative label from i.

gT
λ (i, 1) =

fT (i, 1) + λ

fT (i, 0) + fT (i, 1) + 2λ
(3)

When fT (i, 0) + fT (i, 1) = 0, this small change makes gT
λ =

0.5. Note that this formulation puts a uniform prior over
the two classes: a non-uniform prior is also possible.

WWW 2009 MADRID! Track: Data Mining / Session: Graph Algorithms

34

In the rest of the section we will demonstrate how the
unconditional, conditional and smoothed-conditional prob-
abilities perform in terms of AUC scores in a toy example.
We construct a toy example with 200 nodes, 2 clusters, 260
edges, out of which 30 are inter-cluster links. We will denote
one cluster as the positive cluster and the other as the nega-
tive cluster. We made intra-cluster connections sparse, in or-
der to emphasize the effect of T (not all nodes are reachable
from others for small T). 20 randomly picked nodes are as-
signed labels. We vary the number of positive labels np from
1 to 19. For each number the AUC score is averaged over
10 random runs. In each random run np positive nodes are
chosen from the positive cluster and nn = 20 − np negative
nodes are chosen from negative cluster uniformly at random.
For each random run the fT (i, 1), gT (i, 1), gT

λ (i, 1) values of
the unlabeled nodes i are computed and AUC scores for each
function is recorded and averaged over the runs. The results
are shown in figure 3. The upper panel of the figure has the
results for T = 5, whereas the lower panel has results for
T = 10. Here are the interesting observations:

Figure 3: From left to right the bars show AUC
scores for unconditional, conditional with λ = 0 and
conditional with λ = 0.01, respectively. x-axis shows
number of positive labels, and y-axis shows AUC
scores.

1. The three functions perform comparably for T = 10.

2. When T = 5, for small np the unconditional probabili-
ties (fT) and the unsmoothed conditional probabilities
(gT) perform poorly. As np is increased both of these
show an improved performance. However the perfor-
mance of gT becomes poor as np increases beyond 10.

3. The performance of gT
λ is good (around and above

80%) for different values of T and different number
of positive labels.

Let us justify the three observations. For T = 5 some nodes
might not reach any labels, leading to the different behav-
ior of the three different algorithms. Whereas for T = 10
all of them perform reasonably well. Since the number of
labels is fixed at 20, small np values indicate large nn (num-
ber of negatives). For small values of np, length 5 random
walks from many nodes hit some negative node before hit-
ting any positive node, and hence fT (i, 1) values are zero.
For all these nodes gT (i, 1) is also zero, leading to poor AUC
score. The parameter λ enables gT

λ (i, 1) to successfully use

the fT (i, 0). As np increases and nn decreases we observe a
symmetric situation w.r.t the negative nodes. Even if rank-
ing w.r.t. fT (i, 1) gives good AUC scores (now that we have
a lot of positive labels), the unsmoothed conditional function
gT (i, 1) evaluates to 1 for many nodes, since length 5 ran-
dom walks from those now do not hit a negative node before
a positive node. gT

λ however uses best of both worlds.

5. ALGORITHMS
In this section we will present two different algorithms to

compute the probability of hitting a positive node before a
negative node within T steps. We will consider two scenarios
which justify the use of both algorithms. 1) The user wants
to rerank only the top 100 search results shown before based
on his/her user feedback. 2) The user wants to rerank the
entire graph based on the user feedback.

How do we justify these two needs? The first one is useful
when we believe that the top 100 results from the search en-
gine prior to any relevance feedback are most relevant to the
query. Hence reranking will simply reorder these to show the
most relevant results on top of the ranklist. Now consider
the following case: lets say the user searches for the author
Ting Liu in DBLP. There are two authors in DBLP with the
same name, and they are treated as the same record. One of
these authors is much more prolific compared to the other.
The top 100 results will mostly contain results contextually
similar to the prolific author. If however the user is inter-
ested in the less prolific author, then the better approach is
to rank-order all nodes in the graph.

For the first scenario we present a simple sampling al-
gorithm, whereas for the second we propose a branch and
bound algorithm which finds the potential top-ranked nodes
by provably pruning away the un-interesting nodes. For no-
tational simplicity we will ignore the superscript T and sub-
script λ for now. Unless pointed out f represents fT and g
represents gT

λ . Also we will use positive label for label 1 and
negative label for label 0.

5.1 The Sampling Scheme
For every node i in the candidate set simulate M inde-

pendent length T random walks. A walk stops if it hits
any labeled node. Lets say Mp of these hit a positive node,
and Mn of these hit a negative node. Hence the estimates

of f(i, 1) and f(i, 0) are respectively given by f̂ (i, 1) =
Mp

M

and f̂ (i, 0) = Mn

M
. By a straightforward application of the

Hoeffding Bound we can say that one needs O(1/ε2 log(1/δ))

random runs to achieve |f̂ (i, 1) − f(i, 1)| ≤ ε with probabil-
ity at least 1− δ. Lets say we also want to obtain estimates
ĝ of the conditional probability g.

ĝ(i, 1) =
f̂ (i, 1) + λ

f̂(i, 1) + f̂(i, 0) + 2λ

If f̂(i, y) ∈ [f(i, y) − ε, f(i, y) + ε], for y ∈ {0, 1} with
high probability then a simple algebraic manipulation gives:
ĝ(i, y) ∈ [g(i, y)−ε′, g(i, y)+ε′], w.h.p. where ε′ = ε/(f(i, 0)+
f(i, 1) + 2λ). In order to use this for getting an intuition
about how big λ should be, we notice that λ needs to be at
least 0.5 ∗ (1 − f(i, 0) − f(i, 1))) in order to obtain ε′ = ε.
Note that 1 − f(i, 0) − f(i, 1) is simply the probability that
a random walk from i will not hit any label in T steps.

WWW 2009 MADRID! Track: Data Mining / Session: Graph Algorithms

35

5.2 The Branch and Bound Algorithm
Computing functions over a graph using neighborhood ex-

pansion has been used by [15] for computing nearest neigh-
bors in hitting time to a node, or for efficient computation
of personalized pagerank ([5]). We use a technique similar
to the first approach to compute top k nodes in f values.

Here is the main intuition behind the algorithm. We main-
tain a neighborhood around the labeled points. At any time
we compute a lower (flT (i, 1)) and upper (fuT (i, 1)) bound
of f(i, 1) for all nodes i in this neighborhood. We charac-
terize f(i, 1) for all i outside the neighborhood by a single
lower and upper bound. This global lower bound is zero.
Let the global upper bound be x. As we expand the neigh-
borhood, these bounds keep getting tighter, and x keeps de-
creasing. We stop expansion when x falls below a small con-
stant α. We will first describe the lower and upper bounds
and then present the algorithm and the neighborhood ex-
pansion scheme. We have:

fT (i, 1) =

8

>

>

>

<

>

>

>

:

1 If i = +

0 If i = −

0 If T = 0
P

j P (i, j)fT−1(j, 1) Otherwise

(4)

The fastest way of hitting a positive node before a nega-
tive node from outside the neighborhood is achieved by mag-
ically jumping to the boundary node which has the maxi-
mum probability to hit a positive node before a negative
node. Also from equation (4) note that the only case where
we need to use this is when any of the direct outgoing neigh-
bors of i is outside the neighborhood.

Since we are computing the neighborhood for fT (i, y) let
us denote the neighborhood as Sy, for y ∈ {0, 1}. Let nout(i)
be the set of direct outgoing neighbors of node i. Let nin(i)
be the direct incoming neighbors of i. Let δ(Sy) be the
boundary of the neighborhood Sy, i.e. it contains all nodes
in Sy which has at least one incoming neighbor outside Sy.
Hence the T -step upper bound is defined as

fuT (i, y) =
X

j∈nout(i)∩Sy

P (i, j)fuT−1(j, y)

+ (1 −
X

j∈nout(i)∩Sy

P (i, j)) max
m∈δ(Sy)

fuT−2(m, y)

For the lower bound, we just use the fact that the lowest
probability to hit a positive node before a negative one from
outside the neighborhood is simply zero. This gives rise to

flT (i, y) =
X

j∈nout(i)∩Sy

P (i, j)flT−1(j, y)

The global upper bound ubT (Sy) is simply defined as the
maximum probability to reach label y before any other label
from a node on the boundary of the neighborhood.

ubT (Sy) = max
m∈δ(Sy)

fuT−1(m, y)

Here is the pseudo-code of the algorithm

1. Initialize Sy =
S

i∈L nin(i).

2. ∀i ∈ Sy compute flT (i, y), fuT (i, y)
3. Compute ubT (Sy).

4. Expand Sy. (Details are provided below)

5. Stop if ubT (Sy) ≤ α. Else reiterate from step 2.

By definition all nodes i outside Sy have fT (i, y) ≤ ubT (Sy) ≤
α. Hence we have pruned away all nodes with very small
probability of hitting a positive before a negative.

Now how do we expand a neighborhood in step 4? We
use the heuristic of picking the k nodes on the boundary
with k largest fuT−1 values, and augment the boundary
by adding their incoming neighbors to Sy. The intuition is
that since all bounds use the maximum probability of hitting
label y before any other label in T −1 steps from a boundary
node, augmenting the neighborhood around these points will
probably tighten the bounds more.

The ranking step to obtain top k nodes using upper and
lower bounds is simple: we return all nodes which have
lower bound greater than the k + 1th largest upper bound
(when k = 1, kth largest is the largest probability). We
denote this as fuk+1. Since all nodes which have proba-
bility greater than α to hit a positive node before a neg-
ative node are guaranteed to be in the neighborhood ex-
panded, we know that the true (k + 1)th largest probability
will be smaller than fuk+1. Hence any node with lower
bound greater than fuk+1 is guaranteed to be greater than
the k+1th largest probability. We use a multiplicative slack,
e.g. (fuk+1(1−ε)) in order to return the top k approximately

large probability nodes. In our algorithm we initialize α with
a large value and keep decreasing it until the bounds are
tight enough to return k largest nodes. Note that one could
rank the probabilities using the lower bounds, and return top
k of those after expanding the neighborhood a fixed number
of times. This will only mean a larger approximation slack.

In this section we presented a branch and bound algorithm
to compute top k nodes in the unconditional probability
to hit a positive label before a negative label. How do we
compute the conditional probability?

Given the upper and lower bounds {fu(i, 0), f l(i, 0)} and
{fu(i, 1), f l(i, 1)} the upper and lower bounds on the con-
ditional probabilities can be given by:

gu(i, 1) =
fu(i, 1) + λ

fu(i, 1) + fl(i, 0) + 2λ

gl(i, 1) =
fl(i, 1) + λ

fl(i, 1) + fu(i, 0) + 2λ
(5)

Currently we obtain bounds on f(i, y), for y ∈ {0, 1}, and
use equation (5) for obtaining the conditional probabilities.
Doing neighborhood expansion for the conditional probabil-
ities is part of ongoing work.

5.3 Number of nodes with high f value
How many nodes in the neighborhood will have probabil-

ity greater than α? Its hard to answer this question for a
general directed graph. So we will present a result for an
undirected graph. Let S be the set of nodes with f ≥ α.
Also let Lp be the set of nodes with a positive label. We
prove (appendix) the following for an undirected graph.

Theorem 5.1. In an undirected graph, the size of set S =

{i|fT (i) ≥ α} is upper bounded as: |S| ≤

P

p∈Lp
d(p)

mini∈Sd(i)
T
α
,

where Lp is the set of nodes with a positive label.

This implication of the above theorem is interesting. The
upper bound on S is proportional to the total degree of all
the positive labels and inversely proportional to the quan-
tity mini∈Sd(i), which is the minimum degree of nodes in
S. This means, if the positive nodes have a higher degree

WWW 2009 MADRID! Track: Data Mining / Session: Graph Algorithms

36

relative to the neighboring nodes then it is easy to reach a
positive node. As we will point out in section 6.6 this brings
us directly to an active learning question: how to select a
good set of nodes to be labeled?

6. RESULTS
In this section we present results on the DBLP graph.

The graph has a similar schema as in figure 1. The original
DBLP graph has about 200, 000 words, 900, 000 papers and
500, 000 authors. We will make this graph publicly available.
There are about 10 million edges. We will mention the total
number of undirected edges. As we will point out later, for
each edge we have links in both directions with different
weights. We present our results on two graphs built from
this corpus:

1. Two-layered graph: We exclude words from the
graph representation. Most citation-database related
work [3, 5] use this representation, where the words
are used only in an inverted index pointing to the
document originally containing those. This graph has
around 1.4M nodes and 2.2M edges.

2. Three-layered graph:We include all the words which
occur more than 20 times and less than 5, 000 times
in our graph representation. There are 15, 000 such
words. This has around 6M edges and 1.4 M nodes.
Note that the extra number of edges from 15, 000 word
nodes is about 3.7M .

The links between the paper and author layer is undirected.
For citation links within the paper layer, a link from a paper
x to paper y citing x, is assigned one-tenth of the weight on
the link from y to x. This is very similar to the weighing
convention of [5]. In the three layer graph-representation,
for any paper we assign a total weight of W to the words in
its title, a total weight of P to the papers it cites and A to
the authors on it. We use an inverse frequency scheme for
the paper-to-word link weight. The details can be found in
[16]. We set W = 1; A = 10 and P = 10 so that the word
layer to paper layer connection is almost directed. The leaf
nodes are augmented with a self loop, with the same weight
as its single edge.

6.1 Experimental Settings
In this paper we have proposed a scheme to rerank search

results based on user feedback. However it is hard to do fair
evaluation of user-feedback based ranking. Hence we created
an automated way to mimic user-feedback. In DBLP two
authors with the same name are often listed as the same
record. We use entity disambiguation as a task to evaluate
the predictive performance of a measure. Here are the steps:

1. Pick 4 authors having a common surname.

2. Merge these authors in the same node.
3. Rank other nodes using proximity measure h from the

merged node.

4. Label the top L papers on this list using ground truth.
5. The testset consists of all papers written by these au-

thors modulo the ones already labeled.

6. Compute different measures (e.g. conditional proba-
bility to hit a positive label before a negative label,
etc) for each testnode and then compute AUC score
against the ground truth.

We pick about 20 common surnames. Note that for each
surname there are 4 different authors and hence 4 different
one-vs-all classification scenarios. However sometimes the
top L papers might belong to the same author if he is rel-
atively more prolific than the others. Removing all those
cases we had about 30−40 points in our testset, which gives
about 2 classifications per surname. For each surname we
compute the mean AUC score, and then report the mean
over all the surnames. We also apriori fixed the testset so
that we can compare different experiments over the same
graph, and same proximity measure h. The different experi-
ments were on varying values of the truncation parameter T
and number of labels L. We picked truncated hitting time
[15] as the proximity measure (h) from the merged node,
since its easy to compute and also is very similar to Per-
sonalized Pagerank (PPV). The hitting time from a node x
to node y is the expected time to hit y for the first time
in a random walk starting from node x. For the truncated
version only paths of length less than T are considered. We
hand-tuned the smoothing parameter λ to be 1e − 4 for all
our experiments. We also used 2, 500 samples for the sam-
pling algorithm.

We will describe the results on the two and three-layered
graphs. Note that although experiments with varying num-
ber of labels and varying values of T are conducted on the
same testset across a graph, the testsets are slightly differ-
ent for two different graphs. The purpose of showing results
on both is to examine the general predictive behavior of the
different measures on the two different graph topologies. In
section 6.6 we show how the choice of the original proximity
function h affects the performance of the different measures.
Also in this case the testsets are different, since the ranklists
generated from different choices of h are different.

We compare with two alternative measures of proximity
from only the positive labels. Note that this is a similar idea
to TrustRank. We used 10-truncated hitting time (section
6.3) and PPV (section 6.4) with teleportation value 0.1 for
our experiments. For all experiments other than section 6.2
we used T = 10 for computing conditional or unconditional
probabilities to hit a positive node before a negative.

6.2 Effect of T
In this section we describe the effect of parameter T on the

AUC scores. The results are described in figure 4. Figure
4A. contains the results on the two-layered graph, whereas
figure 4B. contains the results on three-layered graph which
contains the words as well, i.e. information can pass through
common words in the graph. We consider the values of T
in {1, 3, 10, 30, 1000}. For T = 1 the information can only
come from direct neighbors. Since both our testset and la-
beled node-set consists of papers there is a very slight chance
of hitting a labeled node via citation. Still in both cases the
AUC scores are close to random. Another interesting behav-
ior is that T = 3 and T = 10 perform comparably well and
much better than random in both graphs. However in the
two-layered graph, with 10 labeled nodes varying T from 3
to 1000 does not give much boost in performance. However
in the graph with the word layer, from T = 10 to T = 30
there is about a 10% increase in AUC score. This is expected
since in a graph with a word layer it takes longer time to
hit a small set of labeled nodes. Also, note that the AUC
scores increase only slightly as T is increased to 1000.

WWW 2009 MADRID! Track: Data Mining / Session: Graph Algorithms

37

(A) (B)

Figure 4: Experiments on A) The two-layered graph and B) The three-layered graph. The y axis has the
AUC scores and the x axis has different number of labels. The different bars from left to right are for different
values of T : 1,3,10,30 and 1000, respectively.

6.3 Comparison with different algorithms
In figure 5 we compare the unconditional and conditional

probabilities with an alternative diffusion based proximity
measure, namely the hitting time from the positive nodes.
We use T = 10 for these experiments. From figure 4 it
can be observed that other values of T have better AUC
score than T = 10. However we fix T = 10 as a reasonable
truncation parameter. Note that in both the two and three
layered graphs the conditional measure outperforms the hit-
ting time. However the unconditional probability performs
comparably. This might be because the conditional measure
successfully uses the information from both the positive and
the negative labels. Also note that for the three-layered
graph for 10 labels the difference between the conditional
and the hitting time is the smallest. This is because of the
fact that in presence of the word nodes it takes more time
to hit a relatively smaller set of labeled nodes. For T = 20
and T = 30 the the conditional probability outperforms T−
truncated hitting time by a large margin.

6.4 Comparison with PPV
So far we have compared our algorithms only against prox-

imity measures like hitting time. In this section (figure 6)
we will also present the performance of PPV with the start
distribution uniform over the positive nodes. We only com-
pare the conditional probability (T = 10) with PPV (restart
probability 0.1). The results are similar to those of the last
section. For the three-layered graph and 10 labels PPV and
conditional probabilities perform comparatively well. How-
ever for all other cases PPV is outperformed by the former.

6.5 Sampling vs Branch and Bound
In all our experiments we have a small set of candidate

nodes to be ranked, and hence we used sampling to com-
pute the conditional and unconditional probabilities. In this
section we demonstrate the scenario where we want to rank
a larger set of nodes. In table 2 we present the average
timing results for the branch and bound algorithm (BB) vs.
the sampling algorithm (Samp) on around 15 disambigua-

Table 2: Timing results for Branch and Bound (BB)
and Sampling (Samp) for 1000 candidate nodes. We
also report the average number of nodes within 3
hops of the labeled nodes.

Two-layered Three-layered

k BB(s) Samp(s) 3-Hops(#) BB(s) Samp(s) 3-Hops(#)

10 1.6
90 2,000

37
283 160,000

30 3 62

tion tasks with 10 labels each. The experimental setting is
exactly the same as before. For each task we carry out sam-
pling for 1, 000 candidate nodes. The timing provided for
branch and bound is the average time in seconds to compute
k nearest neighbors in f(i, 0) and f(i, 1). We also present
the average number of neighbors (3-Hops) within 3 hops of
the labeled nodes. This is to illustrate the growth properties
of the two graphs. Note that the average time for branch
and bound increases by a factor of 20 whereas that of sam-
pling increases by a factor of 3. The number of edges in
the three-layered graph is about 3 times as large as the two-
layered one, whereas the number of nodes stay roughly the
same. This implies that the average degree becomes about 3
times as large. Time for sampling is directly proportional to
the average degree, which explains the increase in the time
required for sampling.

The time increase for branch and bound can be explained
by the numbers in the fourth and seventh columns (3-Hops(#)).
The size of the neighborhood expanded depends on the growth
rate of the graph. The total number of nodes within 3
hops of all the labeled nodes grow by a factor of around
80 from the two-layered to the three-layered representation.
Although the neighborhood computed via branch and bound
does not contain all nodes within 3 hops, it’s size still grows
faster in the three layered graph than in the two-layered one.

WWW 2009 MADRID! Track: Data Mining / Session: Graph Algorithms

38

(A) (B)

Figure 5: Experiments on A) The two-layered graph and B) The three-layered graph. The y axis has the AUC
scores and the x axis has different number of labels. The bars from left to right are for different measures,
unconditional, conditional, and 10-truncated hitting time from only positives., respectively.

(A) (B)

Figure 6: Experiments on A. The two-layered graph and B. The three-layered graph. The y axis has the
AUC score and the x axis has different number of labels. From left to right the bars are for two measures,
respectively conditional, and Personalized Pagerank from the Positive Labels.

6.6 Effect of the original ranking function h

In this section we show the effect of the original ranking
function from the merged node. So far we have only consid-
ered the nodes ranked by the hitting time from the merged
author node. In a web-search setting the user will be asked
to label these nodes. Note that this is an active learning
heuristic. In [18] the authors mention three desirable prop-
erties of an effective active learning strategy for relevance
feedback in information retrieval. Let us denote the set of
feedback nodes as F . F should be:

1. Relevant to the query.

2. Diverse, in order to avoid redundancy.
3. Selected from a high density region of the data, so that

the query-feedback algorithm has more information.

By picking the labeled nodes from the top ranked documents
we definitely fulfil the first criteria. In this section we will
show that picking hitting time as the original retrieval algo-
rithm automatically satisfies the third criterion.

In order to illustrate this we will pick truncated commute

time as the ranking function. The commute time between
two nodes x, y is defined as the expected time to hit node
y from node x for the first time and come back. The trun-
cated version is simply the sum of the truncated hitting time
from x to y and y to x. We only present the results on
the two-layered graph for simplicity. Also the comparison
is not on the exact same testset, since the ranklist for the
authors change from one measure to another. Note that
the performance of the ranklist based on commute times for
10 labels is close to random. Recall the result in theorem
5.1. We showed that in an undirected graph, if the positive
nodes have higher relative degree compared to the neigh-
boring nodes, then the number of nodes which can reach a
positive label before a negative label increases. This intu-
ition also helps pick an appropriate active learning strategy
for a directed graph. The hitting time from a merged node
to high degree nodes are generally small, since a random
walk is more probable to hit a high degree node. Hence
the labeled set picked from the top-ranked nodes will also
be easily reachable from other nodes. On the other hand

WWW 2009 MADRID! Track: Data Mining / Session: Graph Algorithms

39

Figure 7: The top panel consists of the results when
the original ranklist was based on Hitting time from
the merged node. The bottom panel shows the re-
sults where the ranklist was created based on the
Commute time from the merged node. The y axis
has the AUC scores for unconditional and conditional

probabilities (bars from left to right) and the x axis
has different number of labels.

commute time between nodes x and y is small if degree of
y is small, since that reduces the expected return time to
x. As a result the top 10 labels in the commute-time based
rank list can be harder to reach from other nodes. This is
reflected in the results presented in figure 7. Note that for
20 or 30 labels this difference is not so noticeable as for 10
labels. This is because as we increase the labeled set size,
probability of reaching some label increases.

7. CONCLUSION
In this paper we have presented an effective measure for

re-ranking nodes in a graph based on user feedback. Using
quantifiable tasks on the entire DBLP corpus we have shown
that practical diffusion-based measures which use both posi-
tive and negative feedback outperform those which only use
positive relevance feedback.

8. ACKNOWLEDGMENTS
The authors are grateful to Anupam Gupta, and Xiaojin Zhu

for ideas and discussions. We thank Andy Schlaikjer for sharing
the DBLP dataset. This research was partially supported by U.S.
Dept. of Homeland Security (DNDO CFP06-TA03-LL15).

9. REFERENCES
[1] J. Abernethy, O. Chapelle, and C. Castillo. Web spam

identification through content and hyperlinks. In Proc.
AIRWEB, 2008.

[2] D. Aldous and J. A. Fill. Reversible Markov Chains. 2001.
[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou.

ObjectRank: Authority-based keyword search in databases.
In VLDB, 2004.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proc. WWW, 1998.

[5] S. Chakrabarti. Dynamic personalized pagerank in
entity-relation graphs. In WWW, 2007.

[6] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences. J.
Mach. Learn. Res., 2003.

[7] L. Grady. Random walks for image segmentation. PAMI,
2006.

[8] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating
web spam with trustrank. In Proc. VLDB, 2004.

[9] G. Jeh and J. Widom. Scaling personalized web search. In
Stanford University Technical Report, 2002.

[10] R. Jin, H. Valizadegan, and H. Li. Ranking refinement and
its application to information retrieval. In WWW, 2008.

[11] A. Joshi, R. Kumar, B. Reed, and A. Tomkins.
Anchor-based proximity measures. In Proc. WWW, 2007.

[12] I. Koutis and G. L. Miller. A linear work, o(n1/6) time,
parallel algorithm for solving planar laplacians. In Proc.
SODA, 2007.

[13] A. Levin, D. Lischinski, and Y. Weiss. Colorization using
optimization. ACM Transactions on Graphics, 2004.

[14] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly.
Detecting spam web pages through content analysis. In
Proc. WWW, 2006.

[15] P. Sarkar and A. Moore. A tractable approach to finding
closest truncated-commute-time neighbors in large graphs.
In Proc. UAI, 2007.

[16] P. Sarkar, A. W. Moore, and A. Prakash. Fast incremental
proximity search in large graphs. In ICML, 2008.

[17] D. Spielman and S. Teng. Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear
systems. In Proceedings of the STOC’04, 2004.

[18] Z. Xu, R. Akella, and Y. Zhang. Incorporating diversity
and density in active learning for relevance feedback. In
ECIR, 2007.

[19] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised
learning using gaussian fields and harmonic functions. In
ICML, volume 20, 2003.

APPENDIX
Proof of Theorem 5.1: Denote the probability of an event by
Pr{.}, and the transition matrix by P . d(i) denotes the weighted
degree of a node in an undirected graph. Define S = {i|fT (i) ≥
α}, and Lp as the set of positive labels. We have,

fT (i) = Pri(Hitting a ‘+’ before a ‘−’ in T steps)

≤ Pri(Hitting a ‘+’ in T steps)

=
T

X

t=1

Pri(Hitting a ‘+’ for the first time in exactly t steps)

≤
T

X

t=1

X

p∈Lp

Pri(Hitting p in exactly t steps)

≤
T

X

t=1

X

p∈Lp

P t(i, p) =
T

X

t=1

X

p∈Lp

d(p)

d(i)
P t(p, i) (6)

The final step of equation (6) is due to a straight-forward use
of the reversibility of a random walk in an undirected graph [2].
Now we will upper bound the total probability of hitting a positive
label before a negative label from the set of nodes S.

X

i∈S

fT (i) ≤
X

i∈S

T
X

t=1

X

p∈Lp

d(p)

d(i)
P t(p, i)

≤
1

mini∈Sd(i)

T
X

t=1

X

p∈Lp

d(p)
X

i∈S

P t(p, i)

≤

P

p∈Lp
d(p)

mini∈Sd(i)
T

Combining the definition of S and the above equation we get:

α|S| ≤

P

p∈Lp
d(p)

mini∈Sd(i)
T → |S| ≤

P

p∈Lp
d(p)

mini∈Sd(i)

T

α

WWW 2009 MADRID! Track: Data Mining / Session: Graph Algorithms

40

