

Discover Users' Specific Geo Intent in Web Search

Xing Yi¹, Hema Raghavan² and Chris Leggetter²

¹ Center for Intelligent Information Retrieval, University of Massachusetts Amherst
² Yahoo! Labs, 4401 Great America Pky, Santa Clara, CA

Queries with Geo Intent

www.JeepCalifornia.com

Yahoo! Shortcut - About

Car Dealer near Sunnyvale local.yahoo.com

- 1. Car Concepts (408) 733-1000 - 310 W El Camino Real, Sunnyvale, CA Get Directions | Official site
- Toyota at Sunnyvale ★★★★ (45) (408) 245-6640 898 W El Camino Real, Sunnyvale, CA Get Directions | Reviews | Official site
- 3. <u>Dannicks Auto Care</u> **** (3) (408) 732-4222 135 N Wolfe Rd, #40, **Sunnyvale**, CA Get Directions | Reviews | Official site

More Results...

Geo intent – a user's information need has some kind of entity which has a geographic (geo) location associated with it:

- **explicit:** "one bedroom apartment new york city", "madrid guided tour"
 - An explicit geo query has two portions: e.g. "car dealer in sunnyvale",

non location part location part

• implicit: "pizza delivery", "dental care", "day care", "rockefeller center"

Observations about Web Geo queries

- many web queries contain geo info
 - About 13-14% queries have a place name (Jones *et al.*, Intl. J. of G.I. Science 2008, Sanderson & Kohler, SIGIR GIR workshop 2004)
 - About 30% queries may have geo intent; only about half of them have explicit geo info. (Welch & Cho, SIGIR 2008)

Research questions/tasks

(1) Given a set of queries with no mentions of any location (town/city/state), can we predict which of these have implicit geo intent?

WWW 2009, Madrid, Spain

Localization capability of a geo-intent query

6/31 **Y**AHOO!

Queries with Geo intent but not localized

Research questions/tasks

- 1 Given a set of queries with no mentions of any location (town/city/state), can we predict which of these have implicit geo intent?
- 2 What is the **localization capability** of a geo-intent query?
- 3 What is the **city** corresponding to the geo-intent?

8/31 **Y**AHOO!

Benefits for finding users' geo intent:

- Personalizing web search results
- Better sponsored online advertisement matching

More benefits for finding users' specific geo intent at a fine-grained **city**/location level:

- Delivering more local goods and services
- Finding local news and events

Outline of remainder of the talk

- Feature extraction
 - City Language Models

- Entity Language Models (Raghavan et al. ACM LinkKDD 2004)
- Experiments for each of the 3 tasks:
 - Label generation: millions of training samples from click data.
 - Evaluation
- Conclusions and Future Work

City Language Models

Feature Extraction

Use Interna	al tool que	$eryQ_{nc}$	freq	
\		pizza	200	
	san fancisco	cheap hotel	150	•Bigrar
		49ers	125	•Smoot
		Z00	100	•Details
		golden gate	75	paper
	<u>n</u>		n	

- m age model
- othed
- Is in the

$$P(q \mid C_k) = \prod_{i=1}^n P(w_i \mid w_1^{i-1}, C_k) \approx \prod_{i=1}^n P(w_i \mid w_{i-1}, C_k)$$

City Language Models

Calculate the posteriors:

$$P(C_i | q) \propto P(C_i)P(q | C_i)$$

■ These posteriors are used for predicting the locations for *location-specific* queries

■ Top-10 posteriors are used as features for classifications

"Disney world ticket"		"Harvard University"		
City Name	$P(C_i q)$	City Name	$P(C_i q)$	
Orlando Kissimmee Anaheim New Castle San Antonio	0.98011 0.01386 0.00240 0.00135 0.00044	Cambridge Princeton Longwood Boston Tuskegee	0.63545 0.05360 0.05334 0.01979 0.01719	
•••	• • •	• • •	• • •	

Geo Information Units (GIU)

Feature Extraction

	Q_{nc}	freq	
	pizza	200	mation
oon foncions	cheap hotel	150	rma
san fancisco	49ers	125	nfo inits
	Z00	100	jal i
	golden gate		Global

GIUs like *pizza* co-occur with many different city names

Features based on GIUs

Feature Extraction

Examples:

- Probability $P_g(w_i^{i+n-1})$ of a GIU appearing in geo queries
- Probability $P(w_i^{i+n-1})$ of this GIU appearing in all the queries
- The pair-wise mutual information (PMI) between the w_i^{i+n-1} and each location

Aggregate features and individual GIUs as features

Overall Data Description

Three learning tasks:

- Classifier I: Detecting implicit geo queries
- Classifier II: Discriminating different localization capabilities of geo queries: local geo intent, neighbor region geo intent, etc.
- City language models: Predicting geo entities related to a query

Evaluations and Results

Slice of traffic:

- Training data
 - 1.44b queries in May 08
 - 96.2m are explicit geo queries (training geo subset)
- Testing data
 - 1.42b queries in June 08
 - 96.7m are explicit geo queries (**testing geo subset**)

Weakly supervised automatic label generation

Generating labeled data for Classifier I

Task 1

Step 1: get the clicked url for each query (domain name)

Generating labeled data for Classifier I

Task 1

Step 2: DN1 is set of top 100 clicked domains from Step 1.

Step 3: *DN2* is set of top 100 clicked domains from queries in *training set* and not in *training geo subset*.

Step 4:

- $DN + = DN1 \notin DN2 \qquad DN = DN2 \notin DN1$
- If a query in training geo subset has clicked domain in DN+ → positive sample
- *non-location* parts of positive samples as the final implicit geo intent queries.
- randomly sample 20,000 implicit geo queries and 20,000 non-geo queries to train classifiers

Some examples in DN+ and DN-

DN+ – DN as Positive label	DN- – DN as Negative label
www.citysearch.com www.yellowpages.com local.yahoo.com www.local.com travel.yahoo.com www.tripadvisor.com www.yellowbook.com www.yellowbook.com	en.wikipedia.org answers.yahoo.com search-desc.ebay.com www.youtube.com www.amazon.com www.myspace.com www.nextag.com

Generating labels: Test data

Two testing subsets from testing data

Testing data I:

- Same as training data process, but on testing data.
- 40,000 implicit geo queries + 40,000 negative queries

Testing data II:

- Extract all queries that have DNs in DN+ or DN-.
- Remove all possible location information using WOE
- Sample 40,000 implicit geo queries + 40,000 negative queries
- May have queries that had implicit geo intent to begin with.

Three classifiers

- Support Vector Machines (linear kernel and RBF gaussian kernel)
- Gradient boosting decision trees (Treenet)
- Multinomial Logistic Regression

5-fold cross-validation

Results using CLM features + aggregated GIU features

Task 1

	Р	R	A
Testing Set I			
SVM-Linear	91.7%	82.6%	87.6%
SVM-RBF	91.4%	86.0%	89.0%
Treenet	89.4%	87.4%	88.5%
Logistic-R	91.3%	83.5%	87.8%
Testing Set II			
SVM-Linear	80.9%	35.7%	63.7%
SVM-RBF	80.4%	36.2%	63.7%
Treenet	78.1%	40.9%	64.7%
Logistic-R	80.2%	36.4%	63.7%

Using aggregate GIU stats as well as Task 1 GIUs as individual features.

	P	R	A
Testing Set I			
SVM-Linear	99.9%	66.0%	83.0%
SVM-RBF	98.5%	62.8%	80.9%
Testing Set II			
SVM-Linear	99.9%	48.8%	74.4%
SVM-RBF	97.8%	48.0%	73.5%

Classifier II: Localization capability of a query

Task 2

L(q,C) = distance between the city $C(Q_c)$ in a query $q(Q_{nc})$ and the user IP

 $L^{m}(q) = \text{median of all } L(q,C)>0 \text{ for all cities C associated with q.}$

Data generation for Classifier II

3 classes:

- $L^{m}(q) \le 50 \text{ miles } \rightarrow q \text{ is a local geo query (LG)}$
- 50< L^m(q) < 100 miles → neighbor region query (NG)
- other geo queries (OG)

	A	В	С	D
	(LG/OG)	(LG/NG)	(NG/OG)	(ALL)
Case I	aggregate GIU features			
SVM-Linear	61.3%	53.5%	61.0%	42.6%
SVM-RBF	62.0%	53.9%	61.8%	43.2%
Treenet	62.8%	54.2%	60.8%	44.1%
Logistic-R	61.2%	53.4%	61.0%	42.6%
Case II	high dimensional features			
SVM-Linear	99.6%	97.2%	96.9%	87.0%
SVM-RBF	99.6%	98.0%	98.0%	96.6%

Predict Locations for Location-Specific Queries

- Queries with mentions of an entity that is directly associated with a location: eg., hotels, local tv and radio channels, local newspapers, universities etc.
 - "airport check metro airport" → detroit
 - "woodfield mall jobs" → schaumburg
- Data is generated using several rules (refer paper).
- Top cities using the City Language Models $(P(C_i|q))$ were taken as predictions.

Human Evaluation: key points

669 randomly sampled *location-specific* queries and their predicted related locations

Request annotators to answer two questions with `yes/no/?':

- whether the selected query was a *location-specific* query (84.5 % inter annotator agreement)
- Whether the predicted location was correct (73% agreement)

Of queries marked location specific, accuracy of predicting a location was 84.5%.

Concluding Remarks

- Methods for
 - identifying users' implicit city-level geo intent.
 - discriminating different localization capabilities of geo queries.
 - predicting the city corresponding to the geo-intent in a location-specific query.
- The models are learned from large amounts of clickthrough data and involve little supervision.
- Future Work:
 - Incorporate our CLM into retrieval models.
 - Use geo intent analysis results for helping search engines provide better query suggestions.
 - Exploit other data sources

Questions?

THANK YOU!

