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Motivation

Social-network sites are popular and attract millions of users a day
« Facebook, Orkut, Myspace, Twitter...

e Orkut has more than 130M users, 30M communities, 10K communities
created daily

Rapid growth of user-generated data available

« Communities, images, videos, posts, friendships...

 Information overload problem

We focus on personalized community recommendation task

 Collaborative filtering (CF) approach



Collaborative Filtering (CF)

The operative assumption underlying collaborative filtering
« Users who were similar in the past are likely to be similar in the future

 Use similar users’ behaviors to make recommendations

Algorithms of three different types
 Memory-based
* Model-based

* Association rules



Collaborative Filtering for Orkut Communities

Investigate two algorithms from very different domains

 Association rules mining (ARM)
— Discover associations between communities (explicit relations)
— Users joining “NYY” usually join “MLB”, rule: NYY - MLB
— Target user joins “NYY”, being recommended “MLB”
— Fewer common users between “New York Mets” and “MLB”, no rules
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Collaborative Filtering for Orkut Communities

Investigate two algorithms from very different domains

 Association rules mining (ARM)
— Discover associations between communities (explicit relations)
— Users joining “NYY” usually join “MLB”, rule: NYY - MLB
— Target user joins “NYY”, being recommended “MLB”
— Fewer common users between “New York Mets” and “MLB”, no rules

 Latent Dirichlet Allocation (LDA)
— Model user-community using latent aspects (implicit relations)

— Implicit relation exists between “NYM” and “MLB” via latent structure
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Formulate ARM to Community Recommendation

View user as a transaction and his joined communities as items

_cs=co | 2 | 66.7%

Cg = Cg

User | Communities
U1 {e1, ca, c7} FP-growth
up | {cs, 7, cs, co} ‘
Uz {c2, ca, cs}
Ug {c1, cs, o} | SUPPthreshold =
Association Rules | Support | Confidence
C3z = C7 2 66.7%
ca = Cg 2 66.7%
C7 = C3 2 100%
Cs = Ca 2 66.7%

Frequent Itemsets | Support
{(31 } 2
{ca}
{er}
2 {cs}
{co}
{ca, 7}
1¢3, Cs
Cg. Cg}
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* supp(A) = # of transactions containing A
* supp(A=>B) = supp(A,B)
» conf(A=>B) = supp(A,B) / supp(A)

Recommendation based on rules

« If joining (c, cg), being recommended ¢, (1.667) and ¢, (0.667)




Formulate LDA to Community Recommendation

View users as docs, communities as words and membership
counts as co-occurrence counts
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* a, B: symmetric Dirichlet priors
* B: per-user topic distribution

* ¢: per-topic community distribution

Gibbs sampling
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Recommendations based on learned model parameters
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Parallelization

We parallelized both ARM and LDA
« Parallel ARM effort [RecSys’08]

« Focus more on parallel LDA

We have two parallel frameworks
 MapReduce
« Message Passing Interface (MPI)



MapReduce and MPI

MapReduce

» User specified Map and Reduce functions

Map: generates a set of intermediate key/value pairs

Reduce: reduce the intermediate values with the same key
Read/Write data using disk 1/0

Intensive 1/O cost but provide fault-tolerance mechanism

Message Passing Interface (MPI)

« Send/receive data to/from machine’s memory

* Machines can communicate via MPI library routines
» Lazy checkpoints for fault-tolerance

« Suitable for algorithms with iterative procedures




Parallelization

We have P machines and distribute the computation by rows

M (community) M
N/P | |
N/P | |
(user)N >
NP [ |
Each machine i Community-topic count

\ .
» Computes local variables CSZ (i) and CUZ (i)« User-topic count

Gets global variable C7;* = >". Cg“ (i)
— AllIReduce operation

Computation cost

» Before: O(NLK) x (# of iterations) N: # of users
NLK L: avg # of communities per user
« After: O( 2 ) X (# of iterations) K: # of topics




Parallelization

We have P machines and distribute the computation by rows

M (community) M
N/P | |
N/P | |
(user) N >
NP [ !

Each machine i
- Computes local variables CSZ (i) and CL/7 (i)
» Gets global variable CZ% = 3. C% (i)

Communication cost

 Communication: O (a-logP+ﬁ- bKM+7- uKM)

% ¥ F

startup time of a transfer  transfer time per unit computational time for reduction



Empirical Study

Orkut data
« Community membership data
 492.104 users and 118,002 communities

« User/community data are anonymized to preserve privacy

Evaluations

 Recommendation quality using top-k ranking metric
* Rank difference between ARM and LDA

 Latent information learned from LDA

« Speedup



Community Recommendation

Evaluation metric
« QOutput values of two algorithms cannot be compared directly

« Ranking metric: top-k recommendation [Y. Koren KDD’08]

Evaluation protocol

« Randomly withhold one community from user’s joined communities

— Training set for algorithms
« Select k-1 additional random communities not in user’s joined communities
« Evaluate set: the withheld community together with k-1 other communities

— Order the communities by predicted scores

— Obtain the corresponding rank of the withheld community (O, ..., k-1)

 The lower the rank, the more successful the recommendation



Top-k recommendation performance

Macro-view (0% - 100%), where k = 1001
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ARM: higher the support, worse the performance

LDA: consistent performance with varying # of topics



Cumulative Distribution

Top-k recommendation performance (cont.)

Micro-view (0% - 2%), where k = 1001
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ARM is better when recommending list up to 3 communities

LDA is consistently better when recommending a list of 4 or more



Rank Differences

Rank differences under different parameters

* ARM-50: best-performing ARM

* LDA-30: worst-performing LDA, LDA-150: best-performing LDA
* Rank difference = LHS — RHS
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(a) ARM-50 vs. LDA-30 (b) ARM-50 vs. LDA-150
More withhelod communities have positive rank differences

* LDA generally ranks better than ARM
 LDA is better 2> much better, ARM is better =2 a little better



Rank Differences (cont.)

Rank differences under different parameters
* ARM-2000: worst-performing ARM
« LDA-30: worst-performing LDA, LDA-150: best-performing LDA
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Similar patterns but fewer rank difference O
* Increase in the positive rank difference

» Higher support value causes fewer rules for ARM - narrow coverage



Analysis of Latent Information from LDA (cont.)

User1 whom LDA ranks better
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Analysis of Latent Information from LDA (cont.)

User1 whom LDA ranks better
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Runtime Speedup of parallel LDA

Runtime for LDA using different number of machines
« Use up to 32 machines
« 150 topics, 500 iterations

 Reduce time from 8 hrs to 45 mins

Machines | Comp Comm Sync | Total | Speedup
1 2891 1s Os Os 2891 1s 1
2 14543s 417s 1s 14961s 1.93
4 T755s 66s 1s 8442s 3.42 .
8 4560s 0949s 2s 5511s 5.25 | Linear
16 2840s | [ 1040s 1s | 3881s 7.45 speedup
32 1553s 1158s 2s 2713s 10.66

* When increasing the # of machines
— Computation time was halved
— Communication time increased

— Communication has larger impact on speedup



Conclusions

Discovery of user latent behavior on Orkut

* Compared ARM and LDA for community recommendation task

— Used top-k ranking metric
* Analyzed latent information learned from LDA

« Parallelized LDA to deal with large data

Future work

« Extend LDA method to consider the strength of relationship between a
user and a community

 Extend ARM method to take multi-order rules into consideration

Parallel LDA code release

. (MPI implementation)



