
1

Collaborative Filtering for Orkut Communities:
Discovery of User Latent Behavior

Wen-Yen Chen
Computer Science

University of California, Santa Barbara

Joint work with
Jon Chu (MIT)

Junyi Luan (PKU)
Hongjie Bai (Google)

Edward Chang (Google)

2

3

Motivation

Social-network sites are popular and attract millions of users a day
•  Facebook, Orkut, Myspace,Twitter…

•  Orkut has more than 130M users, 30M communities, 10K communities
created daily

Rapid growth of user-generated data available
•  Communities, images, videos, posts, friendships…

•  Information overload problem

We focus on personalized community recommendation task
•  Collaborative filtering (CF) approach

4

Collaborative Filtering (CF)

The operative assumption underlying collaborative filtering
•  Users who were similar in the past are likely to be similar in the future

•  Use similar users’ behaviors to make recommendations

Algorithms of three different types
•  Memory-based

•  Model-based

•  Association rules

5

Collaborative Filtering for Orkut Communities

Investigate two algorithms from very different domains
•  Association rules mining (ARM)

–  Discover associations between communities (explicit relations)

–  Users joining “NYY” usually join “MLB”, rule: NYY  MLB

–  Target user joins “NYY”, being recommended “MLB”

–  Fewer common users between “New York Mets” and “MLB”, no rules

6

ARM

New York Yankees Major League Baseball New York Mets

Collaborative Filtering for Orkut Communities

Investigate two algorithms from very different domains
•  Association rules mining (ARM)

–  Discover associations between communities (explicit relations)

–  Users joining “NYY” usually join “MLB”, rule: NYY  MLB

–  Target user joins “NYY”, being recommended “MLB”

–  Fewer common users between “New York Mets” and “MLB”, no rules

•  Latent Dirichlet Allocation (LDA)
–  Model user-community using latent aspects (implicit relations)

–  Implicit relation exists between “NYM” and “MLB” via latent structure

7

ARM LDA

Baseball
New York Mets New York Yankees Major League Baseball

Formulate ARM to Community Recommendation

View user as a transaction and his joined communities as items

8

•  supp(A) = # of transactions containing A
•  supp(A=>B) = supp(A,B)
•  conf(A=>B) = supp(A,B) / supp(A)

FP-growth

Suppthreshold = 2

Recommendation based on rules
•  If joining (c7, c8), being recommended c3 (1.667) and c9 (0.667)

Recommendations based on learned model parameters
• 

Formulate LDA to Community Recommendation

View users as docs, communities as words and membership
counts as co-occurrence counts

9

Gibbs sampling

θ ϕ

•  α, β: symmetric Dirichlet priors
•  θ: per-user topic distribution
•  ϕ: per-topic community distribution

ξcu = φczθzu
z
∑

Parallelization

We parallelized both ARM and LDA
•  Parallel ARM effort [RecSys’08]

•  Focus more on parallel LDA

We have two parallel frameworks
•  MapReduce

•  Message Passing Interface (MPI)

10

MapReduce and MPI

MapReduce
•  User specified Map and Reduce functions
•  Map: generates a set of intermediate key/value pairs

•  Reduce: reduce the intermediate values with the same key

•  Read/Write data using disk I/O
•  Intensive I/O cost but provide fault-tolerance mechanism

Message Passing Interface (MPI)
•  Send/receive data to/from machine’s memory

•  Machines can communicate via MPI library routines
•  Lazy checkpoints for fault-tolerance

•  Suitable for algorithms with iterative procedures

11

Parallelization

We have P machines and distribute the computation by rows

Each machine i
•  Computes local variables and
•  Gets global variable

–  AllReduce operation

Computation cost
•  Before:

•  After:

N

M
N/P
N/P

N/P

M

.

.

.
(user)

(community)

N: # of users
L: avg # of communities per user
K: # of topics

Community-topic count

User-topic count

Parallelization

We have P machines and distribute the computation by rows

Each machine i
•  Computes local variables and
•  Gets global variable

Communication cost
•  Communication:

N

M
N/P
N/P

N/P

M

.

.

.
(user)

(community)

startup time of a transfer transfer time per unit computational time for reduction

Empirical Study

Orkut data
•  Community membership data

•  492,104 users and 118,002 communities

•  User/community data are anonymized to preserve privacy

Evaluations
•  Recommendation quality using top-k ranking metric

•  Rank difference between ARM and LDA

•  Latent information learned from LDA

•  Speedup

14

Community Recommendation

Evaluation metric
•  Output values of two algorithms cannot be compared directly

•  Ranking metric: top-k recommendation [Y. Koren KDD’08]

Evaluation protocol
•  Randomly withhold one community from user’s joined communities

–  Training set for algorithms

•  Select k-1 additional random communities not in user’s joined communities

•  Evaluate set: the withheld community together with k-1 other communities
–  Order the communities by predicted scores

–  Obtain the corresponding rank of the withheld community (0, …, k-1)

•  The lower the rank, the more successful the recommendation

15

Top-k recommendation performance

Macro-view (0% - 100%), where k = 1001

ARM: higher the support, worse the performance

LDA: consistent performance with varying # of topics
16

ARM LDA

Top-k recommendation performance (cont.)

Micro-view (0% - 2%), where k = 1001

ARM is better when recommending list up to 3 communities

LDA is consistently better when recommending a list of 4 or more
17

ARM LDA

Rank Differences

Rank differences under different parameters
•  ARM-50: best-performing ARM

•  LDA-30: worst-performing LDA, LDA-150: best-performing LDA

•  Rank difference = LHS – RHS

More withhelod communities have positive rank differences
•  LDA generally ranks better than ARM

•  LDA is better  much better, ARM is better  a little better

18

High variance Low variance

Rank Differences (cont.)

Rank differences under different parameters
•  ARM-2000: worst-performing ARM

•  LDA-30: worst-performing LDA, LDA-150: best-performing LDA

Similar patterns but fewer rank difference 0
•  Increase in the positive rank difference

•  Higher support value causes fewer rules for ARM  narrow coverage
19

Analysis of Latent Information from LDA (cont.)

 User1 whom LDA ranks better User2 whom ARM ranks better

20

Joined communities Joined communities

Concentrated topic dist. Scattered topic dist.

Analysis of Latent Information from LDA (cont.)

 User1 whom LDA ranks better User2 whom ARM ranks better

21

Joined communities

User and withheld community

Joined communities

User and withheld community

Overlapped at peak

Larger communities

Runtime Speedup of parallel LDA

Runtime for LDA using different number of machines
•  Use up to 32 machines

•  150 topics, 500 iterations

•  Reduce time from 8 hrs to 45 mins

•  When increasing the # of machines
–  Computation time was halved

–  Communication time increased

–  Communication has larger impact on speedup
22

Linear
speedup

Conclusions

Discovery of user latent behavior on Orkut
•  Compared ARM and LDA for community recommendation task

–  Used top-k ranking metric

•  Analyzed latent information learned from LDA

•  Parallelized LDA to deal with large data

Future work
•  Extend LDA method to consider the strength of relationship between a

user and a community

•  Extend ARM method to take multi-order rules into consideration

Parallel LDA code release
•  http://code.google.com/p/plda/ (MPI implementation)

23

