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Motivation 

Social-network sites are popular and attract millions of users a day  
•  Facebook, Orkut, Myspace,Twitter… 

•  Orkut has more than 130M users, 30M communities, 10K communities 
created daily 

Rapid growth of user-generated data available 
•  Communities, images, videos, posts, friendships… 

•  Information overload problem 

We focus on personalized community recommendation task 
•  Collaborative filtering (CF) approach 
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Collaborative Filtering (CF) 

The operative assumption underlying collaborative filtering 
•  Users who were similar in the past are likely to be similar in the future 

•  Use similar users’ behaviors to make recommendations 

Algorithms of three different types 
•  Memory-based 

•  Model-based 

•  Association rules 
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Collaborative Filtering for Orkut Communities 

Investigate two algorithms from very different domains 
•  Association rules mining (ARM) 

–  Discover associations between communities (explicit relations) 

–  Users joining “NYY” usually join “MLB”, rule: NYY  MLB 

–  Target user joins “NYY”, being recommended “MLB” 

–  Fewer common users between “New York Mets” and “MLB”, no rules 
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Collaborative Filtering for Orkut Communities 

Investigate two algorithms from very different domains 
•  Association rules mining (ARM) 

–  Discover associations between communities (explicit relations) 

–  Users joining “NYY” usually join “MLB”, rule: NYY  MLB 

–  Target user joins “NYY”, being recommended “MLB” 

–  Fewer common users between “New York Mets” and “MLB”, no rules 

•  Latent Dirichlet Allocation (LDA) 
–  Model user-community using latent aspects (implicit relations) 

–  Implicit relation exists between “NYM” and “MLB” via latent structure 

7 

ARM LDA 

Baseball 
New York Mets New York Yankees Major League Baseball 



Formulate ARM to Community Recommendation 

View user as a transaction and his joined communities as items 
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•  supp(A) = # of transactions containing A 
•  supp(A=>B) = supp(A,B) 
•  conf(A=>B) = supp(A,B) / supp(A) 

FP-growth 

Suppthreshold = 2 

Recommendation based on rules 
•  If joining (c7, c8), being recommended c3 (1.667) and c9 (0.667) 



Recommendations based on learned model parameters 
•    

Formulate LDA to Community Recommendation 

View users as docs, communities as words and membership 
counts as co-occurrence counts  
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Gibbs sampling 

θ ϕ

•  α, β: symmetric Dirichlet priors 
•  θ: per-user topic distribution 
•  ϕ: per-topic community distribution 

ξcu = φczθzu
z
∑



Parallelization 

We parallelized both ARM and LDA 
•  Parallel ARM effort [RecSys’08] 

•  Focus more on parallel LDA 

We have two parallel frameworks 
•  MapReduce 

•  Message Passing Interface (MPI) 
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MapReduce and MPI 

MapReduce 
•  User specified Map and Reduce functions 
•  Map: generates a set of intermediate key/value pairs 

•  Reduce: reduce the intermediate values with the same key 

•  Read/Write data using disk I/O 
•  Intensive I/O cost but provide fault-tolerance mechanism 

Message Passing Interface (MPI) 
•  Send/receive data to/from machine’s memory 

•  Machines can communicate via MPI library routines 
•  Lazy checkpoints for fault-tolerance 

•  Suitable for algorithms with iterative procedures 
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Parallelization 

We have P machines and distribute the computation by rows 

Each machine i 
•  Computes local variables              and 
•  Gets global variable 

–  AllReduce operation 

Computation cost 
•  Before: 

•  After:  
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N: # of users 
L: avg # of communities per user 
K: # of topics 

Community-topic count 

User-topic count 



Parallelization 

We have P machines and distribute the computation by rows 

Each machine i 
•  Computes local variables              and 
•  Gets global variable 

Communication cost 
•  Communication: 
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startup time of a transfer transfer time per unit computational time for reduction 



Empirical Study 

Orkut data 
•  Community membership data 

•  492,104 users and 118,002 communities 

•  User/community data are anonymized to preserve privacy 

Evaluations 
•  Recommendation quality using top-k ranking metric 

•  Rank difference between ARM and LDA 

•  Latent information learned from LDA 

•  Speedup 
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Community Recommendation 

Evaluation metric 
•  Output values of two algorithms cannot be compared directly 

•  Ranking metric: top-k recommendation [Y. Koren KDD’08] 

Evaluation protocol 
•  Randomly withhold one community from user’s joined communities 

–  Training set for algorithms 

•  Select k-1 additional random communities not in user’s joined communities 

•  Evaluate set: the withheld community together with k-1 other communities 
–  Order the communities by predicted scores 

–  Obtain the corresponding rank of the withheld community (0, …, k-1) 

•  The lower the rank, the more successful the recommendation 
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Top-k recommendation performance 

Macro-view (0% - 100%), where k = 1001 

ARM: higher the support, worse the performance 

LDA: consistent performance with varying # of topics 
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Top-k recommendation performance (cont.) 

Micro-view (0% - 2%), where k = 1001 

ARM is better when recommending list up to 3 communities 

LDA is consistently better when recommending a list of 4 or more 
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Rank Differences 

Rank differences under different parameters 
•  ARM-50: best-performing ARM 

•  LDA-30: worst-performing LDA, LDA-150: best-performing LDA 

•  Rank difference = LHS – RHS 

More withhelod communities have positive rank differences  
•  LDA generally ranks better than ARM 

•  LDA is better  much better, ARM is better  a little better 
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Rank Differences (cont.) 

Rank differences under different parameters 
•  ARM-2000: worst-performing ARM 

•  LDA-30: worst-performing LDA, LDA-150: best-performing LDA 

Similar patterns but fewer rank difference 0 
•  Increase in the positive rank difference 

•  Higher support value causes fewer rules for ARM  narrow coverage 
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Analysis of Latent Information from LDA (cont.) 

 User1 whom LDA ranks better           User2 whom ARM ranks better 
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Joined communities Joined communities 

Concentrated topic dist. Scattered topic dist. 



Analysis of Latent Information from LDA (cont.) 

 User1 whom LDA ranks better           User2 whom ARM ranks better 
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Joined communities 

User and withheld community 

Joined communities 

User and withheld community 

Overlapped at peak 

Larger communities 



Runtime Speedup of parallel LDA 

Runtime for LDA using different number of machines 
•  Use up to 32 machines 

•  150 topics, 500 iterations 

•  Reduce time from 8 hrs to 45 mins 

•  When increasing the # of machines 
–  Computation time was halved 

–  Communication time increased 

–  Communication has larger impact on speedup  
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Conclusions 

Discovery of user latent behavior on Orkut  
•  Compared ARM and LDA for community recommendation task 

–  Used top-k ranking metric 

•  Analyzed latent information learned from LDA 

•  Parallelized LDA to deal with large data 

Future work 
•  Extend LDA method to consider the strength of relationship between a 

user and a community 

•  Extend ARM method to take multi-order rules into consideration 

Parallel LDA code release 
•  http://code.google.com/p/plda/ (MPI implementation) 

23 


