WWW2009 EPrints

Detecting the Origin of Text Segments Efficiently

This item is a Paper in the Data Mining track.

Published Version

PDF (825Kb)


In the origin detection problem an algorithm is given a set S of documents, ordered by creation time, and a query document D. It needs to output for every consecutive sequence of k alphanumeric terms in D the earliest document in S in which the sequence appeared (if such a document exists). Algorithms for the origin detection problem can, for example, be used to detect the “origin” of text segments in D and thus to detect novel content in D. They can also find the document from which the author of D has copied the most (or show that D is mostly original.) We propose novel algorithms for this problem and evaluate them together with a large number of previously published algorithms. Our results show that (1) detecting the origin of text segments efficiently can be done with very high accuracy even when the space used is less than 1% of the size of the documents in S , (2) the precision degrades smoothly with the amount of available space, (3) various estimation techniques can be used to increase the performance of the algorithms.

Export Record As...

About this site

This website has been set up for WWW2009 by Christopher Gutteridge of the University of Southampton, using our EPrints software.


We (Southampton EPrints Project) intend to preserve the files and HTML pages of this site for many years, however we will turn it into flat files for long term preservation. This means that at some point in the months after the conference the search, metadata-export, JSON interface, OAI etc. will be disabled as we "fossilize" the site. Please plan accordingly. Feel free to ask nicely for us to keep the dynamic site online longer if there's a rally good (or cool) use for it... [this has now happened, this site is now static]