
Rapid Development of Spreadsheet-based Web Mashups

Woralak Kongdenfha and Boualem Benatallah
University of New South Wales

Sydney, Australia
woralakk, boualem@cse.unsw.edu.au

Julien Vayssière
∗

SAP Research
Brisbane, Australia

julien.vayssiere@sap.com

Régis Saint-Paul
†

CREATE-NET
Trento, Italy

regis.saint-paul@create-net.org

Fabio Casati
University of Trento

Trento, Italy
casati@dit.unitn.it

ABSTRACT

The rapid growth of social networking sites and web communities

have motivated web sites to expose their APIs to external devel-

opers who create mashups by assembling existing functionalities.

Current APIs, however, aim toward developers with programming

expertise; they are not directly usable by wider class of users who

do not have programming background, but would nevertheless like

to build their own mashups. To address this need, we propose a

spreadsheet-based Web mashups development framework, which

enables users to develop mashups in the popular spreadsheet envi-

ronment. First, we provide a mechanism that makes structured data

first class values of spreadsheet cells. Second, we propose a new

component model that can be used to develop fairly sophisticated

mashups, involving joining data sources and keeping spreadsheet

data up to date. Third, to simplify mashup development, we pro-

vide a collection of spreadsheet-based mashup patterns that cap-

tures common Web data access and spreadsheet presentation func-

tionalities. Users can reuse and customize these patterns to build

spreadsheet-based Web mashups instead of developing them from

scratch. Fourth, we enable users to manipulate structured data pre-

sented on spreadsheet in a drag-and-drop fashion. Finally, we have

developed and tested a proof-of-concept prototype to demonstrate

the utility of the proposed framework.

Categories and Subject Descriptors

D2.2 [Software]: Design Tools and Techniques—Modules and in-

terfaces; H.5.2 [Information Interfaces and Presentation]: User

Interfaces—Graphical user interfaces, Interaction styles, Prototyp-

ing; H.4.m [Information Systems]: Miscellaneous

General Terms

Design

Keywords

Web data mashups, spreadsheets, component model, spreadsheet-

based mashup patterns

∗
Julien Vayssière is now with the Smart Services CRC, Sydney, Australia,

and can be reached at Julien.Vayssiere@smartservicescrc.com.au.
†
Work done while the author was at the University of New South Wales.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

1. INTRODUCTION
Service Oriented Architecture (SOA) and Web 2.0 foster a tran-

sition from desktop applications to web applications. This trend is

enabled by Web accessible services such as Flickr, MySpace and

Yahoo! Groups that allow users to store and manipulate their data,

as well as build their own applications on the Web. While these

services enable access to individual Web data sources and appli-

cations, users also demand for the creation of value-added appli-

cations by aggregating existing services [22]. For example, a user

may want to collect Sydney’s attractions and restaurants suggested

by her friends in Yahoo! Groups, and collect photos related to the

suggestions from Flickr. To support this need, a proliferation of

online mashup development services have been developed, which

allow users to create mashup applications by composing data, pre-

sentation and application functionalities from disparate Web ser-

vices. Examples are Yahoo! Pipes [7], Microsoft Popfly [5] and

Intel Mash Maker [3].

While the existing mashup tools improve the development of

mashup applications, important challenges also emerge. Specifi-

cally, the advancement of techniques for creating mashups are driv-

ing companies to build their business models around mashups [16].

These developments seek to enable knowledge workers to effec-

tively perform their routine tasks, which typically involve access-

ing, analyzing and integrating information from various sources.

We believe that knowledge workers, who typically have no pro-

gramming background, should be able to benefit from the power of

the SOA and Web 2.0.

In this paper, we aim to address the above needs by providing a

framework that allows users to develop Web data mashups within

spreadsheets. Spreadsheets are an ubiquitous tool for the analysis

and manipulation of data by desktop users [26]. They have com-

pelling advantages that today we take for granted. They are simple,

intuitive and work very well for performing data visualization and

manipulation. The fact that they are used daily by a vast majority

of users not only proves that they are very usable and useful, but

also allows us to capitalize on the fact that users are accustomed to

this paradigm. This motivates us to investigate the opportunity of

using spreadsheets to access, analyze and manipulate Web data.

In order to provide such a framework, there are several chal-

lenges to be tackled.

Access to and representation of complex data from spreadsheets.

One of the key benefits that spreadsheets bring to data management

is the flexibility in terms of data formatting [23]. Spreadsheets do

not impose many constraints regarding the data layout: data can be

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

851



organized based on criteria such as subjective importance, e.g., by

placing important data on the top-left corner, or related pieces of

data next to each other. Furthermore, the spreadsheet data model

can be considered unstructured and supports only simple data types

such as string, integer, etc. On the contrary, data accessible from

Web data services are complex data such as JSON, RSS, etc. The

challenge here is to bridge this data representation mismatch.

Synchronization between spreadsheet data and Web data. Spread-

sheets provide an incremental approach for building fairly com-

plex applications with immediate feedback (continuous evaluation)

provided at each step of the application development process [17].

More precisely, spreadsheet cell formulas may contain references

to other cells. When a referred cell is manipulated, the values of

all referring cells are evaluated and shown to users immediately.

Spreadsheet users are accustomed to this kind of behavior, and

therefore the challenge here is to identify how to provide immediate

feedbacks to spreadsheet users when Web data are manipulated, as

well as to manage updates on the Web data when users manipulate

them on the spreadsheets.

Reuse-driven of spreadsheet-based Web mashups. As mentioned

earlier, although existing mashup tools have produced promising

results that are certainly useful, they are primarily targeted at pro-

fessional programmers. We argue that it is important to provide

technique and automated support that would shift the efforts of

developing mashups from scratch to that of reuse and customiza-

tion. This will simplify mashup development tasks and increase

user productivity.

Easy manipulation of complex data. Spreadsheets typically offer

users with direct data manipulations such as edit/delete/copy/move

cell contents. Manipulations of complex data instead are usually

specified by queries in a SQL-like language, which may not be in-

tuitive to spreadsheet users. We argue that it is important to provide

support for organizing and manipulating complex data through con-

cepts familiar to spreadsheet users, as well as maintaining the same

simplicity and cleanliness of the paradigm, to the possible extent.

To address the above challenges, we have developed a frame-

work for accessing, visualizing and manipulating Web data within

spreadsheets, and implemented it specifically for MS Excel. We

chose MS Excel because it is the most widely used spreadsheet

product. However, we remark that the concepts presented in this

paper are generic and can be applied to other spreadsheet applica-

tions. Our framework offers the following contributions.

• To support access to Web data, we interpose a data model, a

variant of the Entity-Relationship (ER) model, between the

spreadsheet and heterogeneous Web data services. This in-

termediate data model enables uniform data format and ac-

cess interface to data services, hidden behind the intermedi-

ate layer. We then extend the spreadsheet data model such

that entities become first class values of spreadsheet cells

[25]. A formula language is also proposed to select and ma-

nipulate structured data defined by the ER-based model. This

language is built on top of the standard spreadsheet formula

language.

• To support the synchronization between spreadsheet data and

Web data, we propose a new component model that enables

the superimposition of spreadsheet data views over ER-based

data views. The proposed component model consists of a

data view, presentation, and interaction components. Data

view components allow access to and construct data views

over the ER-based model. Presentation components display

the contents of data view components in the tabular grid of

the spreadsheet and manage user interactions on the spread-

sheet. Data view and presentation components expose a set

of operations that allows other components to query and mod-

ify their internal information, as well as a set of events that

notifies other components that some changes occur. Interac-

tion components consist of a set of synchronization rules that

translate events generated by a component onto operations of

other components.

• To increase simplicity and productivity of mashup develop-

ments, we propose the notion of spreadsheet mashup pat-

terns. Each pattern provides necessary functionality for de-

veloping Web mashups including accessing data from Web

data services, presenting complex data on the spreadsheets,

and handling the synchronization between spreadsheet data

and complex data. We envision that although concrete data

accesses and presentations are application-specific, in many

cases it is possible to capture in a generic way the types of

data access among data services, and presentations among

spreadsheet applications. This allows users to reuse and cus-

tomize spreadsheet mashup patterns instead of developing

such mashups from scratch.

• To support simple manipulations on complex data, we en-

vision an approach that allows spreadsheet users to perform

drag-and-drop operations. These operations are then trans-

lated into queries over structured data. This is the key to en-

able exploration and understanding of the complex data, and

will move the manipulations of complex data from writing

SQL-like queries to concepts which are familiar by spread-

sheet users.

To demonstrate the value of our approach, we have developed a

prototype, called SpreadATOR [25], for a sales opportunity identi-

fication scenario, in which data are aggregated and combined from

three different data sources: Nasdaq RSS service, Google RSS

News service, and a CRM system. The prototype can be extended

to other data sources. With our proposed framework and imple-

mentation, it is possible to access a variety of Web data sources,

represent them on the spreadsheet, and manipulate data (including

imposing changes on the source, if needed) from the “comfort” of

the spreadsheet and with analogous flexibility and simplicity.

In the next section, we use a running example to describe some

requirements in mashup developments. Then we discuss mecha-

nisms for accessing complex data from spreadsheets (Section 3),

followed by the proposed component model (Section 4). We present

the proposed set of spreadsheet-based mashup patterns in Section 5.

We describe our development tool in Section 6. Finally, we discuss

related work and conclude in Section 7 and Section 8, respectively.

2. RUNNING EXAMPLE
To illustrate the approach, we use a scenario of a salesperson

who wants to identify opportunities for selling software products.

To do so, she monitors stock markets, looking for companies with

the largest gains in their stock prices. A strong rise of a company’s

stock is often a sign that a significant event just happened in the

company, and any such event may be an opportunity for selling

the software. For instance, a sharp increase in the stock price may

be a consequence of new plans to expand the business, or of the

company becoming the target of an acquisition. Since expansions

and mergers often result in IT projects which might rip and replace

existing softwares, the salesperson could have opportunities to sell

software if she reacts quickly to this event.

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

852



Figure 1: Reference scenario: development of Web data

mashups for a sales opportunity identification

In this scenario, the salesperson accesses five stocks with biggest

gains from Nasdaq.com. She then wants to get more information

about each stock’s company in the list. In particular, she would like

to read news related to the company, as well as to know if these

companies have been contacted by her own company before. She

decides to use our tool to create a mashup that aggregates stock list

from Nasdaq Stock information service, news related to each stock

from Google news service, and contact details and purchase his-

tories of each stock’s company from her corporate’s CRM system.

Figure 1 depicts this scenario, in which the salesperson connects

Nasdaq, Google News and CRM services into the tool, selects and

customizes spreadsheet-based mashup patterns to build component

models that capture necessary mashup functionalities. The desired

outcome is the mashup shown in Figure 3. In the following, we de-

scribe what the salesperson expects our tool to simplify her mashup

development tasks.

First, since the Nasdaq, Google News and CRM services use

different data access methods (e.g., HTTP or SQL queries) as well

as data representations (e.g., XML or JSON), ideally a tool would

need to hide this heterogeneity from the user. Second, the data ob-

tained from the CRM system may contain thousands of records,

hence a tool would need to cater for both simple query specifica-

tion (e.g., to filter unwanted data), and presentation (e.g., to display

large set of data on the spreadsheet). Third, the user may want to

present stock data and news data in different ways. For example,

she may want to display stock data using a typical tabular presenta-

tion with each stock as a row and its attributes (e.g., price change,

volume traded, etc.) as columns. News about the company should

instead be presented as a list of hyperlinks which allows the user

to quickly access to news data related to a given company that she

is interested in. As an example, Figure 3 shows the application

that the salesperson would like to have at her disposal. By clicking

on an index in cell B12 of Sheet1, the salesperson is shown with

a collection of news related to a symbol RATE in Sheet2. A tool

therefore would need to provide different methods, which should

be commonly used by spreadsheet users, for laying out data on the

spreadsheet. Fourth, in some situations, the salesperson may want

to manipulate contact details on the spreadsheet, hence a tool needs

to support simple data manipulations, which should also preserve

the spreadsheet metaphor. The tool should also be able to push the

contact details back to the CRM system after manipulations. Fi-

nally, stock data and news are frequently updated, so a tool needs

to provide users with ability to browse up-to-date information on

the spreadsheet.

In the remainder of the paper we discuss the model and tool that

allow users to build and interact with these kinds of spreadsheet-

based Web data mashups.

3. ACCESSING COMPLEX DATA
This section discusses how, from a spreadsheet, we can access

heterogeneousWeb data sources and construct data views over these

data that hide the heterogeneity from spreadsheets users, in a man-

ner that is as simple and usable as possible. We then present how

we bridge the link between these data views and the spreadsheet

world by way of a formula language. Since the formula language

was presented in an earlier work [25], we limit ourselves to a short

description for the self-containment of this paper.

3.1 Constructing views over Web data services

Uniform data access. To deal with the heterogeneity of data mod-

els and data access methods of services, we leverage the data ser-

vice technology [10, 11], a recent advent of SOA for exposing data

as services. We particularly leverage the Web data service frame-

work which is integrated as part of the ADO.Net 3.5 [11]. It offers

a variant of the ER model to describe the structure of the underly-

ing data sources. Specifically, when accessing data from non-data

service sources, additional adapters are required to map data for-

mats, access and manipulation operations between SpreadATOR

data services and underlying data sources.

In mashup creations, users typically want to create complex data

views, which may involve “joining” data from multiple data ser-

vices. For example, in our sales opportunity scenario, the user

may wish to display news for each company, which requires join-

ing stock data with their corresponding news through a relationship

(called AppearedIn). However this relationship does not exist, the

user needs to provide it to our system. We refer to this kind of re-

lationship as a user-defined relationship. This relationship is then

used by our system to collect only a set of news entities that sat-

isfies the AppearedIn relationship. Specifically, these news entities

are obtained as a result of a semi-join between News and Stock

entity types. Figure 2 shows a subset of the data schema for our

reference scenario. It consists of two entity types: NasdaqStock,

GoogleNews. Each entity type has a particular set of attributes.

The reference attributes whose values are associations to entities of

another entity type are denoted by “*”. As an example, the Nasdaq-

Stock entity type has an association attribute GoogleNews, whose

value is a reference to an instance of type GoogleNews. All other

attributes are atomic.

Figure 2: A subset of schema for the reference scenario

Constructing data views. The Service Browser, illustrated in Fig-

ure 3, greatly simplifies the task of constructing data views for

spreadsheet users. This is achieved by presenting to users the en-

tities that are accessible from data services using a tree representa-

tion. The construction of a data view begins when a user adds the

URL of a Web data service in the tool. If the corresponding service

is accessible, the service browser displays its ER-based schema us-

ing a series of trees in the following manner: each entity is rep-

resented as a distinct tree, the attributes of a given entity are rep-

resented as leaves in that tree and related entities are presented as

children nodes. These children nodes may further be expanded to

display related entity attributes and their own related entities in a

recursive manner. The result is a set of trees where each represents

a possible path through the ER-based schema starting from each of

the entities of the schema. Figure 3 partially shows a tree repre-

senting the schema in Figure 2. The root node represents Nasdaq-

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

853



Stock entity, which has three leaves representing attributes Symbol,

Volume and Price. The related entity GoogleNews is represented

as an expandable child node which, when expanded, presents the

attributes and related entities of GoogleNews. By navigating to the

node representing GoogleNews, users can construct a data view that

contains only news related to stock data. Specifically, this user in-

teraction is translated to join operation over the ER-based schema.

Figure 3: Spreadsheet-based mashup for the reference scenario

We also provide a series of graphical primitives to allow users

to create more sophisticated queries in a form called Preview, as

shown later in Figure 8. By dragging a URL node from the service

browser onto a cell in the spreadsheet, this Preview form will be

shown to the user. From the Preview, users can perform the follow-

ing operations: (i) Projection: users can select attributes of interest

by ticking corresponding check boxes, (ii) Filter: users can limit

instances of an entity to be retrieved to the subset that matches a

given filter predicate. The maximum number of instances displayed

in a data view can also be specified, and (iii) Sort: users can order

instances in a data view according to their attributes in ascending

or descending order. The result of all these operation is immedi-

ately showed to the users (hence the name preview) who can refine

a query until they are satisfied.

Once data views have been constructed, we allow users to store

them in the Query folders. With the query folder, users can create

new virtual folders, populate these folders with data views (con-

taining sets of objects obtained from external Web services). This

enables users to flexibly manage constructed views using their fa-

miliar concepts of file systems. Consider the salesperson in our ref-

erence scenario. She can create a folder named SalesOppr-Nov08

(as shown in Figure 3) to store all data views constructed for the

reference scenario as files in a single folder. When select a file in

the folder, the user can browse the data view contents represented

in a tree structure in the Object Browser, as shown on the bottom

right of Figure 3. The user can also simply drag a file in a folder

to a cell in the spreadsheet. This action enables the user to bring

complex data contained in a data view into spreadsheet cell. In the

following subsection, we describe how our tool support complex

data in spreadsheets.

3.2 Supporting complex data in spreadsheets
In the previous subsection, we described how users can graph-

ically construct data views over a given ER-based schema. Once

data views have been constructed, they need to be displayed on the

tabular grid of spreadsheets. However, a major challenge here is

the difference in the representations between data contained in the

data views (i.e., complex data as described in Section 3.1) and that

supported by the spreadsheet (i.e., simple data of types string, inte-

ger, etc.). To bridge this mismatch, we extend the spreadsheet data

model so that cells can contain complex data. The details of our

model and formula language are presented in [25]. In this paper,

we only summarize the key points using examples.

Like in any spreadsheets, we refer to a cell by its column and row

coordinates. For example, cell B2 refers to a cell located at column

B and row 2. Each cell has a formula which is evaluated into an

atomic typed value such as integer, float, string, datetime, and dis-

played to the user. A cell may contain a reference as a hyperlink to

another cell in the same or different worksheet. We extend standard

spreadsheet formula language such that a formula can be expressed

by one of the following:

• B2 = http://www.nasdaq.com/...: defines contents of cell B2

as a URL of the data service from which complex data is

retrieved from. We refer to cells containing this kind of for-

mula as container cells. A container cell holds complex data,

as a set of objects which are instances of a particular entity

in the ER-based model.

• B4 = <<1.B2>>.[0]/_symbol: defines contents of cell B4

based on contents of cell B2. The formula in cell B4 con-

tains a value selection expression, which particularly returns

the value of attribute symbol in the first object in the set. Sim-

ilarly the name of an attribute can be obtained by a formula

like <<1.B2>>.[0]/#symbol. We refer to cells containing

value selection expressions as presentation cells since they

are used to present contents of complex data stored in a con-

tainer cell.

We would like to note that formulas, specified in our formula

language, are maintained in a separate context, called the external

mapping definition, which leaves untouched the standard spread-

sheet formula language and overall behavior of the hosted spread-

sheet application. Specifically, the set of objects, held by a con-

tainer cell, is handled by our system; for spreadsheet (MS Excel

in particular) a cell simply contains a user-defined label as shown

in Figure 3. The advantages of this formula language are three-

fold: (i) complex data now become first class values of cells, and

their contents can be laid down on the tabular grid of spreadsheets,

(ii) as our system maintain complex data in a separate context, we

maintain the simplicity of spreadsheet paradigm, and (iii) the syn-

chronization between spreadsheet data and complex data is possible

since formulas maintain correspondences between them.

4. SUPERIMPOSITION OF SPREADSHEET

VIEWS OVER DATA VIEWS
We propose a new component model that is designed to manage

the synchronization between complex data contained in data views

(described in Section 3.1) and spreadsheet data (described in Sec-

tion 3.2). The design of this component model comes from our ob-

servation that there are always some elementary features required

for implementing any data mashups: data have to be retrieved from

data services, a representation suitable for spreadsheet display has

to be built and interactions of the user with the spreadsheet environ-

ment may need to be translated to operations on the underlying data

and vice versa. Our proposed component model therefore consists

of three elements: data view, presentation, and interaction modules

(also called tool components or simply components hereafter). It is

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

854



somewhat analogous to the Model-View-Controller design pattern

(MVC), which has proved effective for building interactive appli-

cations. The data view component is responsible to retrieve data

and cache a view of these data (it would correspond to the Model

in traditional MVC). The presentation component is responsible for

presenting data on the tabular form of spreadsheets (analogous to

the View in MVC). The interaction component is responsible for

synchronizing the data views and spreadsheet presentations (anal-

ogous to the Controller in MVC).

Services

Operations

- RefreshView()

- ModifyAttr()

Events

- ViewUpdated()

Data View Component

Data View

Operations

- RefreshTable()

Events

- Modified()

Presentation Component

Mapping

Specification

Interaction Component

Data to Tabular

Interaction rules

Tabular to Data

Interaction rules

Render the

presentation

Handles user 

interactions

Pull/Subscribe

Data access

Inter-component

Synchronization

Presentation

Figure 4: Component Model

We identify the following abstractions for each of the compo-

nents. Data view and presentation components have the notion of

states such that when changes occur, they can notify other compo-

nents to update their states accordingly. The states of data view

components corresponds to their data views used to cache data

accessed from external services, while the states of presentation

components corresponds to the presentations of data on the spread-

sheet. Data view and presentation components expose events to no-

tify their state changes to other components, as well as operations

that act as state change requests. Interaction components consist of

a set of rules that are used to handle the synchronization between

data view and presentation components. We detail each of these

components below.

4.1 Data view components
Data view components allow accessing data from external data

sources accessible through Web data services (see Section 3.1). We

provide two types of data view components: push component and

pull component. They capture two data access patterns commonly

found on the Web, i.e., request-response and publish-subscribe. We

enable these two data access methods through the use of the Jab-

ber framework [4]. Both push and pull components, once obtained

data, will store the data in a data view. The contents of a data view

is a set of objects corresponding to entities of the ER-based model.

Data view components expose a set of operations and events that

allows them to interact with other components of the model.

Operations. Operations allow other components to query and mod-

ify the contents of a data view component. Table 1 shows a set of

operations that are common to any data view components. This set

of operations is classified into: data access operations that allow

querying the contents of a data view component, update operations

that allow modifications of objects in the data view, e.g., adding or

removing their attributes.

Events. Events allow a data view component to notify other com-

ponents of updates in its contents. Specifically, when the contents

of a data view component is updated, it sends D_ViewUpdated

event to notify other components. This event passes complex data

contained in the data view as its parameter.

Data Access Operations

dv:getObjects() returns a set of objects in a data view

dv:getObject(oj ) returns a particular object

dv:getAttrName(oj , ak) returns the name of an attribute

dv:getAttrValue(oj , ak) return the value of an attribute

Update Operations

dv:modifyValue(ak ,old,new) changes the value of an attribute

dv:insertAttr(ak , N) adds a new attribute ak with value N

dv:deleteAttr(ak) deletes an attribute from the data view

dv:insertObj(oj , N) adds an object oj with new value to the data view

dv:deleteObj(oj ) removes an object from the data view

dv:refreshView() replace the data view with a new set of objects

dv:dropView() drops the data view

dv:sortBy(ak , order) sorts the current set of objects in the data view by attribute

ak according to the order condition, which can be ascending or descending

dv:filter(pred) conditionally selects a subset of the current set of objects in the data

view according to condition pred

Table 1: The list of operations of data view components

4.2 Presentation components
Presentation components allow displaying data in the tabular grid

of spreadsheets. Each presentation component embeds a presenta-

tion specification, which describes how the contents of a data view

component is mapped to a tabular display. The presentation spec-

ification itself is built by composing lower level presentation ab-

stractions that model the organization of data on the spreadsheet.

Presentation specification. The presentation of data on the spread-

sheet needs to adhere to the tabular data model that has made spread-

sheets so popular (described in Section 3.2). Structured data may

be represented on the spreadsheet in a variety of ways. Some ex-

amples of presentations will be discussed in Section 5. To allow

constructing these presentations, we introduce hereafter a compo-

sitional framework which allows to specify mappings from struc-

tured data to clusters of cells on the spreadsheet.

The spreadsheet presentation is modeled with the following con-

structs:

• ATTRIBUTE specifies a cell that contains an attribute name.

• VALUE specifies a cell containing an attribute value.

• RECORD specifies a range of cells that displays contents of

an object.

• SET specifies a range of cells that presents a collection of

objects.

• SHEET specifies a worksheet.

Figure 5 shows an example of the presentation specification where

attribute names and values of entities (originating from a data view

component) are displayed. It consists of a container cell (shown by

a user-defined label) and an expandable number of rows. The first

row consists of a collection of cells presenting attribute names (also

called ATTRIBUTEs), while other rows present their corresponding

values (also called VALUEs). The rows displaying attribute values

are called RECORDs.

Internally, presentations are specified relatively to the coordinate

of a container cell, i.e., the top-left cell. All other cells’ contents

are computed from this container cell by iterating through the data

objects presented in the data view and through attributes of these

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

855



Figure 5: Presentation Specification

objects. Iterations are figured on the graphical representation of

Figure 5 by ellipsis.

These constructs are used as building blocks that can be com-

posed to build tabular presentations similar to the concept of report

building systems such as ASP.NET [2], which supports generation

of web pages by binding data with basic web-page components.

Following a similar approach, we need to bind these presentation

constructs to data views. This is achieved by the Data-to-Tabular

Mappings.

Data-to-Tabular Mappings. The objective of Data-to-Tabular Map-

pings (DTM) is to bind contents of a data view component to the

presentation specification. This is achieved using the formula lan-

guage discussed in Section 3.2, as described in the following.

Figure 6: DTM for the Table presentation component

ADTM for the presentation in Figure 5 is shown in Figure 6. The

mapping states that the content of cell 〈Cx, Cy〉 is derived from

a set of objects in a data view component (obtained by operation

dv:getObjects). Hence, cell 〈Cx, Cy〉 will act as a container

cell because its content is associated with complex data (here, a

list of complex objects). The mapping also specifies that the at-

tribute names are displayed on the row located below the container

cell. This is achieved by iteration over the attributes of the objects

referenced in the container cell (and maintained by the data view

component). All objects are assumed to have the same set of at-

tributes, i.e., they are different instances of the same entity. When

executed, each iteration (indexed by k) populates a cell in column

Cx+k with the corresponding attribute name. Finally, the mapping

also iterates through the list of objects referenced in the container

cell. When executed, each iteration step (indexed by j) produces a

row in the presentation for displaying attribute values of the object

corresponding to this step. Within a row, the cells are populated by

iterating over the object attributes.

Note that the data-to-tabular mappings are generic, i.e., they are

not tied to a specific application, and they are able to map the

contents of any data view components onto the presentation. The

application specific details are provided by the user as customiza-

tion parameters and these are the only inputs required from users.

These parameters include a content parameter and a spatial param-

eter. The content parameter specifies the data view whose contents

needs to be displayed on the spreadsheet. The spatial parameter

corresponds to a coordinate in which the presentation begins. These

parameters are used to generate a set of mapping formulas specified

in the formula language (discussed in Section 3.2), which we will

explain in more details later in Section 5.2.

Operations. A presentation component exposes a set of operations

(see Table 2) that allows interfacing the presentation component

with the spreadsheet environment and allows its synchronization

with other components. Based on the mappings presented above,

spreadsheet presentation can be adjusted according to user manip-

ulations.

The behaviors of operations on presentation cells depend on their

cells’ types, e.g., ATTRIBUTE, VALUE,RECORD. In particular, when

the user performs a manipulation, the system checks type of the se-

lected presentation cell and invokes a corresponding operation. For

example, assume that cell B5, in Figure 3, is being deleted. The

system checks its cell type, i.e., VALUE cell, thus invokes the oper-

ation deleteVALUE accordingly. Now assume that cell B3 is being

deleted. In this case, since cell B3 is an ATTRIBUTE cell, display-

ing the name of an attribute symbol, the operation deleteATTR is

invoked. This operation deletes the contents of cell B3 itself and

all the VALUE cells displaying values of the attribute symbol (cells

B4:B8), as well as removes all external mappings of cells B3:B8.

Users have access to operations on container cells by a context

menus obtained by a right click on the container cell. This context

menu allows them to modify the display of the complex data ref-

erenced in the container cell. For example, the Refresh operation

triggers a new query on the data source and updates the spread-

sheet presentation with the latest values; the Selection operation

allows users to restrict the set of objects displayed by applying a

filter; the SortBy operation lets the user order a set of objects ac-

cording to some criteria.

Events. A presentation component exposes a set of events to which

other components may subscribe to obtain notifications of changes

in the presentation state. This is useful when other components

need to react to user manipulations performed in the spreadsheet

environment. For example, the presentation component in Figure 3

will fire a “P_VALUEchanged” event when the user edits contents

of a VALUE cell B4. As shown in Figure 4, our component model is

only concerned with component-defined events, not native events

defined by the spreadsheet applications. Figure 10 illustrates the

distinction between component-defined events and native spread-

sheet events. Essentially, user actions on the spreadsheet (e.g., edit

content of cell B4) trigger native spreadsheet events. Presentation

components intercept the native spreadsheet events, check type of

the cell being manipulated (i.e., VALUE), and process them inter-

nally (by calling operation modifyVALUE), and trigger component-

defined events (P_VALUEchanged) to signal other components of

their states change. A set of events defined for the Table presenta-

tion component is shown in Table 2.

4.3 Interaction Components
The role of interaction components is to synchronize data view

and presentation components. They respond to events from pre-

sentation components (resp. data view components) by invoking

operations on data view components (resp. presentation compo-

nents) following specifications expressed in interaction rules. Es-

sentially, an interaction rule establishes a publish/subscribe rela-

tionship between data view and presentation components in terms

of event publisher, event type, event subscriber and an operation

of the subscribing component. When event parameters and oper-

ation parameters are not compatible, interaction components may

contain additional data transformation logic.

Depending on their directions, interaction rules can be classified

into presentation-data and data-presentation interaction rules.

Presentation-data interaction rules define how to map events,

generated by a presentation component, onto operations of data

view components. An example of presentation-data interaction rule

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

856



Operations on presentation cells

ui:modifyVALUE(Vj ,old,new) changes content of a VALUE cell from old to new

ui:deleteVALUE(Vj ) deletes contents of a VALUE cell

ui:deleteATTR(Aj ) removes a set of ATTRIBUTE and VALUE cells

ui:renameATTR(Aj ,old,new) changes content of ATTRIBUTE cell from old to new

ui:insertATTR(Aj ,N) adds a set of ATTRIBUTE and VALUE cells

ui:deleteREC(Ri) removes a range of cells referred by a RECORD

Operations on container cells

ui:SortBy(Aj ,order) updates a presentation for a set of objects sorted by attribute

Aj in ascending or descending order

ui:Selection(pred) updates a presentation with a set of objects satisfying pred

ui:Refresh() updates a presentation with a new set of objects from external service

ui:delete(C) deletes a container cell and all its depending presentation cells

Events

P_VALUEchanged(Vj ,old,new) notifies that a VALUE cell is modified

P_VALUEdeleted(Vj ) notifies that a VALUE cell is deleted

P_ATTRinserted(Aj ,N) notifies that a set of ATTRIBUTE and VALUE cells is added

P_ATTRdeleted(Aj ) notifies that a set of ATTRIBUTE and VALUE cells is deleted

P_ATTRrenamed(Aj ,old,new) notifies that content of ATTRIBUTE cell is modified

P_RECdeleted(Ri) notifies that a RECORD is removed

P_sorted(order) notifies that a set of RECORDs is reordered

P_selected(pred) notifies that RECORDs are selected based on condition pred

P_refreshed() notifies that the presentation is replaced with a new set of objects

P_dropped() notifies that the presentation is dropped

Table 2: Interface of the Table presentation component

specifies interactions between presentation component StockTable

and data view component StockDataView in our reference scenario

is shown below (interfaces of these components are omitted here

for the sake of clarity).

<interaction

publisher="StockTable" event="P_VALUEChanged"

subscriber="StockDataView" operation="dv:modifyValue"/>

This rule maps the P_VALUEChanged event from StockTable com-

ponent onto the operation dv:modifyValue of StockDataView com-

ponent. Consider an example when the user modifies contents of

cell B4. The presentation component StockTable captures this user

manipulation and triggers an event P_VALUEchanged. Upon re-

ceiving this event, the interaction component dispatches the event

parameters and passes them to the operation modifyValue of the

StockDataView component. This may involve an additional data

transformation (see Section 5.2).

Data-presentation interaction rules define how to map state change

events, generated by a data view component, onto operations (i.e.,

state change requests) of presentation components. An example of

data-presentation interaction rule that facilitates the interactions be-

tween StockDataView and StockTable components is shown below.

It maps the D_ViewUpdated event from StockDataView component

onto the Refresh operation of StockTable component.

<interaction

publisher="StockDataView" event="D_ViewUpdated"

subscriber="StockTable" operation="ui:Refresh"/>

5. PATTERNS FOR SPREADSHEET-BASED

WEB MASHUPS DEVELOPMENT

Developing a complete mashup application using the component

model we have presented is not trivial if users have to specify in-

teraction rules and build presentation from scratch. However, this

architecture can be brought to users in a convenient way through

pre-defined and reusable patterns that capture common methods

of data access and their possible tabular presentations as found in

spreadsheet applications. We now present a set of common tabu-

lar presentations frequently found in spreadsheet applications, and

then discuss how we capture these presentations in reusable pat-

terns for developing spreadsheet-based Web data mashups.

5.1 Common tabular presentations
In [18] we have analyzed a collection of spreadsheet applica-

tions. We found that there are a set of presentations that are com-

monly used to display data on spreadsheets as shown below.

1. Content presentation. This presentation displays an object of

a data view (e.g., a stock RATE) as a range of two columns on a

spreadsheet. The first column presents attribute names of the ob-

ject, while the second column displays its attribute values (shown

in Figure 7(a)).

2. Repeater presentation. This presentation presents a set of objects

(e.g., a set of stocks) by repeating the presentation of the content

presentation (in Figure 7(a)) in either vertical or horizontal direc-

tion (shown in Figure 7(b)).

3. Table presentation. This is the most popular presentation that we

have found, and presents a set of objects as a table which each row

presents an object and each column presents an attribute’s value.

The top-most row presents attribute names (shown in Figure 7(c)).

4. Index presentation. This presentation displays a set of objects as

hyperlinks that allow navigation to their presentations displayed in

separate worksheets (Figure 7(d)). The presentation of each object

is generated using the content presentation in Figure 7(a).

5. Relationship-Index presentation. This presentation presents a

set of objects as hyperlinks that allow navigation to their related

sets of objects in separate worksheets (shown in Figure 7(e)). The

presentation of each related set of objects are displayed using the

presentation of either a repeater presentation (Figure 7(b)) or a table

presentation (Figure 7(c)).

6. Hierarchical presentation. This presentation displays sets of

objects related by relationships in a hierarchical structure. For ex-

ample, for each stock symbol, its related set of contacts is displayed

using the Table presentation (Figure 7(c)) as shown in Figure 7(f).

5.2 Spreadsheet-based Web mashup patterns
In this work, we capture the above set of common tabular presen-

tations as presentation components that encapsulate reusable pre-

sentation logic for displaying data on tabular grid of spreadsheets.

These presentation components, together with data view compo-

nents and interaction components, are packaged as Spreadsheet-

based Mashup Patterns, which allow users to create mashups where

interfaces are tabular grids in spreadsheets.

Consider the Table Mashup Pattern that captures the way in which

data are presented in tabular format as shown in Figure 7(c). This

pattern is specified as a combination of the data view component in

Section 4.1, the tabular presentation component in Section 4.2, and

the interaction component in Section 4.3. It captures the default

behavior (default presentation, data access method, and interaction

feature) that needs to be customized to meet the specific needs of

a user. The customization includes constructing a data view, and

specifying a method for refreshing data (e.g., user-driven refresh,

periodic pull, or push).

As an example, consider a user who selects this Table Mashup

Pattern to import and present stock data. The user customizes the

pattern to import top-five gain stocks from the Nasdaq service, and

present values of attributes symbol, volume and price in the spread-

sheet. With further customization, the user can enable three pos-

sible methods for refreshing data from Nasdaq. Depending on the

user’s option, three possible scenarios can be generated from this

pattern. These scenarios share the same presentation component

but differ in their data view components used to access data and

interaction components used to synchronize spreadsheet data and

structured data views.

Now we discuss how mashups can be built from spreadsheet-

based mashup patterns. To conserve space, we only illustrate a

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

857



Figure 7: Some examples of data presentations in spreadsheets

single task of creating a table presentation of stock data as shown

in Figure 3. Table Mashup Pattern requires parameters to instan-

tiate its DTM definition as discussed in Section 4.2. We provide

a graphical tool, called Preview, to support this task (as shown in

Figure 8). In the following, we describe how this preview can be

used to instantiate the Table Mashup Pattern.

Figure 8: Constructing data views with selection and projection

1. Configure a data view component. The first task that the user

needs to do when developing a mashup is to specify which data

they wish to access. Step 1 in Figure 8 shows the dialog used for

configuring a data view component. The user simply needs to pro-

vide a URL corresponding to the data source to access. Once the

URL has been provided, the user can browse the source schema

and construct data views by using the Service Browser (Step 2)

combined with the preview form. This form is displayed when the

user selects the entity to import in the service browser and assign

a container cell for that entity (simply using a drag-and-drop oper-

ation to move the URL above a cell). The preview form displays

a tabular presentation of the entity used for specifying additional

query parameters such as a selection or a projection (Step 3).

2. Configure a presentation component. The user can then choose

among several tabular presentations for displaying the query result

on the spreadsheet (as shown in Step 4). Tabular presentations are

not only displaying values of the entity but also include functional-

ities for sorting and paging operations (as shown in Step 5 and Step

6). The sorting operation allows the users to sort a set of objects in

ascending or descending order, while the paging operation allows

users to specify a maximum number of objects to be presented on

the spreadsheet.

3. Configure an interaction component. Finally, the user can

specify how the mashup should react to notifications from the data

source (in Step 7). By default, the presentation is not updated auto-

matically, the user needs to manually request for a refresh.

Figure 9: Generated mapping formulas

Once the user finished pattern configuration in the preview form,

a data view component (StockDataView), a presentation component

(StockTable) and an interaction component are constructed. To gen-

erate the presentation of stock information, the StockTable compo-

nent uses the configuration parameters to generate a set of map-

ping formulas, as shown in Figure 9, from the DTM definition (in

Figure 6). These mappings are used to bind contents of the Stock-

DataView component to the presentation specification in Figure 5.

As a result, a table presentation is displayed on the spreadsheet

starting from the cell where the URL is dropped on (cell B2) as

shown in Figure 7(c).

After the presentation has been generated, it can be modified

by user manipulations on the spreadsheet or updates from the data

source. Consider the example in Section 4.3 when the user changes

the contents of cell B4 from “RATE” to “RATECorp”. Figure 10

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

858



Figure 10: Interaction handling

provides a simple illustration of what happens at the runtime based

on the presentation-data interaction rule specified in Section 4.3:

• Capturing event from the presentation component involves:

(1) the spreadsheet application fires a native event upon the

modification of cell B4, (2) the component StockTable cap-

tures this native spreadsheet event, calls its internal operation

ModifyValue and triggers an event P_VALUEchanged, and

(3) the interaction component captures this event.

• Invoking operations of subscribing components involves: (4)

the interaction component locates components and opera-

tions matching this event based on the interaction rules. For

each interaction, the interaction component transforms event

parameters to corresponding operation parameters, and then

invokes the specified operation on the subscribing compo-

nent. In our example, the interaction component transforms

the event parameter B4 into an attribute name “symbol”, while

the other parameters are the same. Then the interaction com-

ponent invokes the operation modifyValue of the compo-

nent StockDataView and passes to this operation a set of pa-

rameters “symbol”, “RATE”, and “RATECorp”.

The above example illustrates how our framework shifts the ef-

forts of developing mashups from scratch to that of customiza-

tion. Users can create mashups simply by instantiating spreadsheet-

based mashup patterns. Tasks such as building tabular presenta-

tions as well as coordinating data view and presentation compo-

nents are delegated to the system, thereby simplifying mashup de-

velopment.

5.3 Drag-and-drop re-organization
Spreadsheets are typically used as a tool to visualize, manipulate

and analyze data. When introducing complex data into spreadsheet

data model, we need to provide data manipulation operators for

such complex data. We follow the spreadsheet paradigm and al-

low users to manipulate their data using drag-and-drop fashion. In

Section 4.2, we have pointed out that users can invoke some oper-

ations on container cells by using context menus. We also allow

users to do direct cell manipulations on presentation cells such as

copy/move/delete/edit. Due to space limitations, we cannot discuss

all of the operations in detail. Rather we summarize some of them,

mainly by using examples.

Consider the salesperson who wants to create a new copy of

stock data so that she can manipulate and perform different analy-

sis on the data. In this case, she copies container cell B2 to cell G2.

This operation works as if one were dragging a data view from a

folder into a spreadsheet cell. That is, creating a new copy of stock

data in cell G2. To create a presentation of this stock data, the user

can use our formula language or simply selects and customizes one

of our spreadsheet-based mashup patterns.

Now assume that there exist a data view PODataView containing

hundreds of purchase orders, and a presentation POTable display-

ing these purchase orders in cells H1:K250. The salesperson may

wish to copy only ten purchase orders into another location on the

spreadsheet so that she can have a closer look at their details. In this

case, assume that she copies a range of cells H20:K30 presenting

purchase order data to cell M1. Copying presentation cells results

in the creation of a new presentation component that also displays

contents of the data view PODataView. The presentation of this new

component consists of ten RECORDs, each RECORD consists of

four ATTRIBUTEs and VALUEs displaying attribute names and val-

ues of purchase orders. This new presentation component needs to

subscribe to the current interaction component managing synchro-

nization between PODataView and POTable so that its presentation

can be kept synchronized with the contents of PODataView com-

ponent. In this case, when the contents of PODataView component

is updated, e.g., by new notifications from the CRM service, the

presentations of both POTable and the new presentation component

are updated accordingly.

By these drag-and-drop manipulations, users do not need to go

through all the process of constructing data views again when they

want to apply some changes to data views. For example, when

users want to remove attribute volume from the presentation of

stock data, the user do so by simply deleting cell C3. Our tool of-

fers various options for users to reorganize complex data displayed

on the spreadsheet. Users can choose an option that is suitable for

their jobs at hand.

6. IMPLEMENTATION
The implementation of our prototype consists of a backend server

to execute mashups and a set of adapters to communicate with ex-

ternal data sources. The backend server is an extension of our pre-

vious work [25, 18]. It has been implemented as an add-in to MS

Excel using C# and VSTO [21]. The information from the Excel

sheet being manipulated by the user is captured by a VSTO pro-

gram and sent to our system. The C# modules are compiled and

run as backend server.

The backend server consists of a code generator. Given a mashup

pattern, the code generator outputs a set of mappings necessary for

binding data to Excel sheet, component definitions, and necessary

code that models the component interactions. The backend server

then executes the mappings to populate Excel sheet, instantiating

the components, and executing the interaction code to coordinate

the interactions among the components. The generated interaction

code manages events subscriptions and operation invocations.

To communicate with non-data service sources, we have built a

number of adapters. An adapter implements the mappings between

the ADO.Net Web data service and the data sources. In our sales

opportunity identification scenario, we have implemented adapters

for two RSS services: Nasdaq, Google News; these adapters could

be adopted easily to communicate with any RSS services. Since

the data transformation code is already built, we need to only map

their URLs into the data service standard.

7. RELATED WORK
Many commercial tools have been developed to help spreadsheet

users to access external data sources. MS Excel, in particular, al-

lows to import data from external sources using, e.g., XML Map-

ping tool [24], SQL importation [19], Web data importation [13],

or Analysis Services [1]. However, these tools have several limita-

tions. First, they do not maintain references to complex data, rather

they convert complex data into Excel’s supported types when pre-

sented on the spreadsheet. Second, they denormalize the nested

structure that might exist in the imported data, e.g., converting hi-

erarchical XML documents, into flat tables. Last but not least, the

fact that a distinct environment is used to access each type of data

sources hampers the integration of the various data sources, thus

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

859



it is not possible for authoring any form of composition between

these different sources.

There exist some efforts for supporting homogeneous data ac-

cess from different sources in spreadsheets through Web data ser-

vices. For instance, Visual Studio Tool for Office (VSTO) allows

developers to access data services from ADO.Net framework. An-

other example is to manipulate data services entities by using the

macro language that accompanies spreadsheet environments. How-

ever, these technologies are intended for professional programmers

with a solid background in object-oriented programming. Other

approaches, offered simpler web services invocations, exist. For

instance, StrikeIron [6] is a commercial add-in to MS Excel that

allows users to invoke web services using drag-and-drop manipu-

lations. This initiative does not consider complex objects obtained

from web services as first class entities, rather they are translated

as a collection of atomic values presented in a range of cells. It is

not possible to refer to the complex objects in subsequent data vi-

sualizations or analysis, leave alone the relationship that may exist

among the imported data. In addition, the correspondences among

elements in the data service and cell contents of the spreadsheet are

lost once imported, hence it is not possible to refresh the spread-

sheet with new data or update the Web data when users manipulate

them on spreadsheets.

Some research work have proposed models to capture data pre-

sentations in spreadsheets. In [15, 20], the authors have provided

a powerful data model to represent a broad class of tables covered

by both relations and spreadsheets. However, the specification of

presentations needs to be done manually. [8, 14] proposes a spe-

cific table presentation as the purpose is to ensure the spreadsheet

correctness. However this approach also provide support for the

specification of presentations through the notion of template. Our

approach is located in between these two approaches: it defines

a small set of frequently used spreadsheet data presentations and

provides support for their specifications.

The work presented in [9] automatically infers presentation tem-

plates (as proposed in [8, 14]) from existing spreadsheets. This

work is especially useful when users want to export spreadsheet

data to external sources. Our data presentation templates can be

adopted by such approach.

In the area of Web application development, there are several

work [12, 2] that provide data presentation patterns that are used to

model web applications. These patterns can be adopted by our ap-

proach, however unlike these existing work, we follow spreadsheet

paradigm and provide interactive approach for data importation and

presentation with immediate results.

8. CONCLUSION AND FUTURE WORK
Skilled knowledge workers are moving towards creating mashups

to fulfill their routine tasks. In this paper, we proposed a frame-

work that allows users to easily build mashups within their familiar

spreadsheet environment. As we have illustrated, while our tool

makes complex data as first class spreadsheet cell values, we main-

tain the same simplicity of the paradigm. Users can therefore em-

ploy their familiar spreadsheet concepts to explore, manipulate, and

analyze complex data.

In addition, with the proposed component model, our tool can be

used to build fairly sophisticated mashups, involving joining data

from multiple Web data services, keeping spreadsheet data up to

date with Web data. We also simplify mashup development by

proposing a set of spreadsheet-based mashup patterns. These pat-

terns simplify mashup development tasks and increase users pro-

ductivity by shifting the efforts of building mashups from scratch

to that of reuse and customization.

We have used our tool to create prototypes of mashups that in-

volve accessing data from different types of data sources, e.g., RSS

feeds services, relational databases, and Flickr. Our experience

demonstrated the superiority of our spreadsheet-based mashup tool

compared to existing tools in terms of both simplicity and develop-

ment productivity.

9. REFERENCES
[1] Designing Reports with the Microsoft Excel Add-in for SQL

Server analysis services. Microsoft Corp., 2004.

[2] ASP.Net. http://asp.net/.

[3] Intel mash maker. http://mashmaker.intel.com.

[4] Jabber Framework. http://www.jabber.org.

[5] Microsoft popfly. http://www.popfly.ms.

[6] StrikeIron Web Services for Excel.

http://www.strikeiron.com/tools/toolssoaexpress.aspx.

[7] Yahoo! pipe. http://pipes.yahoo.com/pipes.

[8] R. Abraham, I. Cooperstein, S. Kollmansberger, and

M. Erwig. Automatic generation and maintenance of correct

spreadsheets. Proc. ICSE’05, pages 136–145.

[9] R. Abraham and M. Erwig. Inferring templates from

spreadsheets. In Proc. ICSE ’06, pages 182–191.

[10] M. Carey. Data delivery in a service-oriented world: the bea

Aqualogic data services platform. In Proc. SIGMOD ’06,

pages 695–705.

[11] P. Castro and A. Nori. Astoria: A programming model for

data on the web. Proc. ICDE’08, pages 1556–1559.

[12] S. Ceri, P. Fraternali, and A. Bongio. Web modeling

language (webml): a modeling language for designing web

sites. In Proc. WWW’00, pages 137–157.

[13] J. R. Durant. Web queries and dynamic chart data in Excel.

Technical report, TR. Microsoft Corp., 2003.

[14] M. Erwig, R. Abraham, S. Kollmansberger, and

I. Cooperstein. Gencel: a program generator for correct

spreadsheets. J. Functional Programing, 16(3):293–325.

[15] M. Gyssens, L. Lakshmanan, and I. Subramanian. Tables as a

paradigm for querying and restructuring. In Proc. PODS ’96.

[16] A. Jhingran. Enterprise information mashups: integrating

information, simply. In Proc. VLDB ’06.

[17] S. Jones and M.Burnett. A user-centred approach to

functions in excel. SIGPLAN J., 38(9):165–176, 2003.

[18] W. Kongdenfha, B. Benatallah, R. Saint-Paul, and F. Casati.

Spreadmash: A spreadsheet-based interactive browsing and

analysis tool for data services. In Proc. CAiSE’08.

[19] K. Laker. Exploiting the power of oracle using microsoft

excel. Technical report, Oracle Corp., 2004.

[20] L. Lakshmanan, S. Subramanian, N. Goyal, and

R. Krishnamurthy. On query spreadsheets. In Proc. ICDE’98.

[21] E. Lippert and E. Carter. .Net programming for office: C#

with Excel, Word, Outlook, Infopath. Addison Wesley, 2005.

[22] D. Merrill. Mashups: The new breed of web app. Technical

report, IBM Corp., 2006.

[23] J. Pemberton and A. Robson. Spreadsheets in business.

IMDS J., 100(8):379–388, 2000.

[24] F. Rice. Creating XML mappings in excel 2003. In TR.

Microsoft Corp., 2005.

[25] R. Saint-Paul, B. Benatallah, and J. Vayssiére. Data services

in your spreadsheet! In Proc. EDBT ’08.

[26] C. Scaffidi, M. Shaw, and B. Myers. Estimating the numbers

of end users programmers. In Proc. VLHCC ’05.

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

860


