
Mashroom: End-User Mashup Programming
Using Nested Tables

Guiling Wang1, Shaohua Yang1,2, Yanbo Han1
1Institute of Computing Technology, Chinese Academy

of Sciences
Beijing, 100190, P.R. China

{wangguiling, yhan}@software.ict.ac.cn

2Graduate University of Chinese Academy of Sciences
Beijing, 100190, P.R. China

yangshaohua@software.ict.ac.cn

ABSTRACT
This paper presents an end-user-oriented programming
environment called Mashroom. Major contributions herein
include an end-user programming model with an expressive data
structure as well as a set of formally-defined mashup operators.
The data structure takes advantage of nested table, and maintains
the intuitiveness while allowing users to express complex data
objects. The mashup operators are visualized with contextual
menu and formula bar and can be directly applied on the data.
Experiments and case studies reveal that end users have little
difficulty in effectively and efficiently using Mashroom to build
mashup applications.

Categories and Subject Descriptors
D.2.13 [Reusable Software]: Reuse models; H.5.m [Information
Interface and Presentation]: Miscellaneous.

General Terms
Design, Human Factors, Languages

Keywords
Mashup, End-user programming, Spreadsheet, Nested table.

1. INTRODUCTION
The involvement of end users has been an essential driving force
of the Web-related development. Recently, mashup has become a
trend, which allows non-professional users to build Web
applications by combining functionalities offered by more than
one websites to deal with situational and ad-hoc problems.
Software tools called mashup editors for constructing the new
type of integrated applications, such as IBM Damia [1], Yahoo
Pipes [2], Microsoft Popfly [3], Intel MashMaker [4,5] and CMU
Marmite [6], have boomed. Consider the situation in which a user
wants to get the state-of-the-art information of on-play movies
and the related movie reviews, but seldom can an existing web
site provides an integrated view of that information from various
web sites. Rather than having to copy, paste and edit the movie
list and the movie review list in a separate document, the mashup
editors make it easy for end-users to build an application that can
extract, combine the information, and generate the integrated
view without the tedious manual work.

Popular mashup editors like IBM Damia, Yahoo Pipes, Microsoft
Popfly employ flow-chart-like formalisms. However, studies [6]
show that the concept of data flow is the main barrier for
accomplishing a mashup task. Users are often puzzled by the
alignment of inputs and outputs and the particular ordering of
operators. In order to alleviate the difficulties of end users in
understanding the flow-chart-like formalisms, we adopt the idea
from spreadsheet programming, which supports visualization and
direct-manipulation of data. The problem is that the traditional
two-dimensional spreadsheet paradigm, such as MS Excel, does
not allow direct manipulation of complex objects, such as
RSS/Atom and XML or JSON results returned from RESTful
Web Services. Once such data is imported and represented in a
spreadsheet, they become a collection of atomic values in cells.
All the operations are applied on the cells, and it is not convenient
to manipulate or compose a complex object.

In this paper, we propose Mashroom, a mashup tool with a novel
programming model. The key innovation of Mashroom lies in that
it takes the nested table as the data structure and formally defines
a set of visual mashup operators to offer a spreadsheet-like
programming experience. Case studies are made, showing that
Mashroom can provide a new way for end users to build the
common mashups effectively and efficiently.

The rest of this paper is organized as follows. Section 2 explains
what have influenced the Mashroom design. Section 3 presents
the Mashroom programming model including the definition of the
application structure, the data model and the mashup operators.
Section 4 introduces a trail application. Section 5 evaluates
Mashroom with experiments. Section 6 reviews related works.
Finally, the paper concludes in Section 7.

2. FOUNDAMENTALS OF MASHROOM
PROGRAMMING
In this section we explain how inspiration is drawn from nested
table, spreadsheets, and end-user programming, and sketch the
overall design philosophy of the Mashroom programming.

2.1 Uses of Nested Table
The nested relational model was first proposed in 1977 [7], also
called NF2(non-first normal form). It allows relations to have
relation-valued attributes and is one of the most adopted data
model for representing semi-structured web data. It has been
successfully utilized in web data extraction applications [8] and
has been implemented directly in some modern DBMSes, such as
Oracle. The reason is that the nested relational model is simple,
intuitive, and expressive enough to represent the semi-structured
data commonly found in Web pages [9].

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

861

We adopted the nested relational model as the basic data model
and designed the Mashroom editor’s graphical user interface (GUI)
based on the nested table out of the following reasons:

 Compared with the traditional 1NF relational model, the
nested relational model is intuitive and closer to the real
world because a whole complex object is not distributed
over several different relations in the nested relational
model. This model has a strong foundation both in query
algebra and in query optimization with years of research and
industry practice.

 In the nested relational model, data is easy to be represented
as nested tables, which are understandable by end users.

For developing mashups, a set of high-level and task-oriented
mashup operators and corresponding graphical mashup language
are needed. There exist the following potential challenges:

 For end users, data query for mashups should be organized
in such a way that human visual consumption can be
facilitated. There are some research works focusing on
graphical query languages based on the nested table such as
QSByE [10] and GXQL [11]. However, the existing
graphical query languages are designed strictly in a low-
level database query manner. They lack the critical feature
of building the dataflow into an individual operator. For
example, the loop operation can’t be described in a black-
box and hidden from end-users. And data dependency can’t
be supported intuitively.

 For mashup creation, not only the data query operators are
needed but also operators that facilitate data visualization on
a view (e.g., a map, table, timeline, etc.) or asynchronous
notification such as sending an E-mail are also needed.

2.2 Uses of Spreadsheets
Spreadsheets have achieved remarkable success in allowing non-
programmers to represent complex data and perform certain
computation tasks. One of the key advantages of spreadsheets is
their “low entry barrier” programming paradigm. It requires little
time and skill before end users are rewarded by simple but
functioning programs that model their problems of interest. As
noted, spreadsheets suggest that “a limited set of carefully chosen,
high-level, task-specific operations and a strong visual format for
structuring and presenting data are key characteristics for user
programming environment” [12]. If mashup editors inherited the
key characteristics of spreadsheets, such as low entry barrier,
mixing values with expressions, carefully chosen operations and
strong visual format, they would help end users in reducing the
complexity and improving user experience in building mashups.

Specifically, Mashroom borrows the following features from
spreadsheets:

 In addition to visual menu and direct manipulation of data,
formula bar allows users to manipulate data by flexibly
editing a formula.

 Loop execution is described by selecting a range of cells
intuitively.

To adopt spreadsheets programming for building mashup, we
introduce several modifications to the traditional spreadsheet
programming paradigm.

 The traditional spreadsheet consists of a two-dimensional
array of cells. It is unsuitable for displaying nested table.
We designed a view structure for the nested table to display
the nested relational data, and besides, we make some
modification on the screen layout (see Section 3.4.1).

 We defined a set of mashup operators on the nested
relational data model. Using the mashup operators, users
can import a service as a table, drag and drop one column
onto the other for merging, invoke and link another service
directly on a range of rows in an iterative manner, and so on.

2.3 Learning from End-User Programming
Research and practice on end-user programming started as early
as the 50’s of the last century [13]. Programming by Example or
Programming by Demonstration, as an important research thread
in end-user programming, has been shown to help end users
create programs without coding [14,15]. These systems let the
user demonstrate the desired program by going through the steps
on an example, then generate an instantiable operation sequences
or infer the underlying application logic from the demonstration
process.

Following the idea of “Programming by Example”, as illustrated
in Figure 1, at build-time, Mashroom lets users demonstrate the
mashup logic by querying and composing the example nested
table, then generate the mashup script through parameterizing the
user instructions. At run-time, the mashup script can then be re-
applied on other web resource instances.

Wuda
o-kou

MEGA
Box

Chengf
u Road

Zhongg
-uan
Cun

Waiting In
Beijing

Lun
Zhang Oct 24th

Wanted
Timur

Bekmamb
etov

Oct 9th

… … …

… … …

Waiting In
Beijing

Lun
Zhang Oct 24th

Theaters

Movies
Theater
name

Addres
s Label Directo

r On Show Time

Wuda
o-kou

MEG
A

Box

Chengf
u Road

Zhongg
-uan
Cun

Waiting In
Beijing

Lun
Zhang Oct 24th

Wanted
Timur

Bekmamb
etov

Oct 9th

… … …

… … …

Waiting In
Beijing

Lun
Zhang Oct 24th

Theaters

Movies
Theater
name

Addres
s Label Directo

r On Show Time

Mashroom GUI (worksheets)

Mashup Script

…

Mashup Engine

Wudao-
kou

MEGA
Box

Chengfu
Road

Zhongg-uan
Cun

Waiting In Beijing Lun Zhang Oct 24th

Wanted Timur
Bekmambetov

Oct 9th

… … …

… … …

Waiting In Beijing Lun Zhang Oct 24th

Theaters

Movies
Theater
name Address

Label Director On Show Time

build-time

run-time

record user
instructions

Nested
Relational Data

…

Figure 1. Programming by Example in Mashroom

3. MASHROOM PROGRAMMING MODEL
3.1 The Structure of a Mashup Application
The structure of a mashup application is depicted in Figure 2. The
basic concepts of the mashup application structure include Web
Source, Data Service, Composite Data Service, Presentation View
and Mashup View. A mashup application, or a web/mobile widget,
is a Data Service associated and configured with a presentation
view for presenting the underlying data.

Web Source: Web Sources are the information resources on the
Web in the format of HTML, RSS/Atom or RESTful Web Service.

Data Service: Web Sources become Data Services through
encapsulation. A Data Service can be denoted as a tuple DS = <id,
name, uri, encoding, params, schema, desc>, where id is the
identification, uri is the web access address of the Web Source,
encoding is the encoding format of the underlying data, params is
the input parameters, schema is the data schema of the service’s

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

862

output represented as the nested relational model and desc is the
description of the data service. A Data Service wraps a Web
Source which can be various formats and provides a uniform data
model (Section 3.2) and a uniform data access interface. When a
data service is associated and configured with a presentation view,
it becomes a widget or mashup application.

Presentation Views

Data Services/
Composite Data

Services

Widget/
Mashup Application

process/compose

Assoc-
iate

config
wrapREST

RSS

SOAP

HTML

Mashup View/IDE

Web
Sources

Figure 2. The Structure of a Mashup Application

Composite Data Service: Data Services can be processed or/and
composed into a new Composite Data Service. A Composite Data
Service can also be associated and configured with a presentation
view to form a widget or mashup application. A Mashup view is a
user interface (UI) for editing a mashup. Data Services can be
processed and composed into a Composite Data Service using the
mashup view. There are various ways to design a mashup view.
For example, the mashup view of Yahoo! Pipes is designed based
on a flow-chart-like graphic UI. In Mashroom, the mashup view is
designed based on nested table UI.

Presentation View: A Presentation View is used to present the
output data of a (Composite) Data Service. Data Services can
have various presentation views, such as list view and table view
for multiple-record data, map view for geography data and gallery
view for photography related data.

3.2 Data Model
In Mashroom, we use the nested relational model as the
underlying data model of Data Services. For the definition of
nested relational model, please refer to paper [16]. In the nested
relational model, data is represented as nested tables. Figure 3
shows an example nested table. The “Theaters” relation specifies
a list of theaters located in a certain region. It has two atomic
attributes (“Theater name” and “Address”) and a sub-relation
named “Movies”. The sub-relation “Movies” describes the movies
that are on show at each theater.

Nested table offers simple and intuitive access to underlying data
sources. For the example above, data related to movies is
represented directly as a sub-relation of “Theaters”, rather than
distributing over another distinct table. Thanks to the recursive
algebra as the foundation of query language for nested table [16],
developers can access and manipulate the sub-relation data
directly, without having to restructure the un-nested relation. For
example, the recursive selectionσ(Theaters(MoviesLabel=”Waiting in

Beijing”)) can be used directly to access theaters where a certain
movie is on show.

Wudao-
kou

MEGA
Box

Chengfu
Road

Zhongguan
Cun

Waiting In Beijing Lun Zhang Oct 24th

Wanted
Timur

Bekmambetov
Oct 9th

… … …

… … …

Waiting In Beijing Lun Zhang Oct 24th

Theaters

Movies
Theater
name Address

Label Director On Show Time

N
ested Table
 S

chem
a

N
ested Table
 Instances

Figure 3. An Example Nested Table

In Mashroom, the underlying data of a mashup application is also
called MashSheet, which consists of a set of worksheets. A
worksheet is in fact a nested table, in which each column
represents an atom attribute or a sub-relation, and each row
represents a tuple. An atom attribute of a worksheet can be one of
six types: text, textlink, img, imglink, video, videolink.

Different from the traditional spreadsheet where “cell” is the first-
class object, MashSheet takes “column” as the first-class objects.
The syntax of Mashroom formula is built from column references,
operators (defined in section 3.3), and constant values. Because
the schema of a nested table can be equivalently viewed as a tree,
the syntax of column references is built from the path expression
on the schema tree corresponding to the nested nature of the data
model. For example, a formula theaters/movie/director specifies
the “director” column of the relation “movies” which is a sub-
relation of the relation “theaters”.

3.3 Data Mashup Script and Operators
In Mashroom’s mashup editor, a set of actions can be applied on a
group of worksheets. Mashroom records the sequences of user
instructions in a construct called Data Mashup Script, which
describes the generalized logic of how Data Services can be
processed and composed into a Composite Data Service. After the
user finishes data services processing and composition, the script
is built into a Composite Data Service for later instantiation with
other parameter values.

A Data Mashup Script script can be modeled as a dataflow graph
in a data flow computation way. The dataflow graph is a directed
acyclic graph of nodes and edges. The nodes consume and
produce data tokens along the edges. In a similar way, script can
be represented as a directed acyclic graph of operators (ops) as
nodes and variables (vars) as edges. Each script is associated with
a subset of vars that are global input parameters. Therefore, a
script can be represented as a tuple script = <vars, ops>. Where
each operator in ops can be represented as a tuple op = <actor,
actorIn>, where actor is an encapsulation of the computation that
computes on nested tables from a set of input variables. The
output variables of the script or operator are all atomic attributes,
relation or sub-relations of the MashSheet, so it is not necessary
to specify the output variables for each operator.

Table 1 shows the entire set of operators in Mashroom and their
corresponding operations of the nested relational model. Detailed
definitions of the operators are as follows:

Import
The Import operator inserts a new worksheet into the current
MashSheet by importing a Data Service. When applying this
operator, data from the specified service is fetched dynamically
and displayed in a worksheet with a unique ID.

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

863

Table 1. Operators in Mashroom

Types Operators Nested Relation
Model Operation

Worksheet Creation Import, CreateSheet New, Insert

Worksheet Data
Manipulation

Filter, Sort, HeaderTruncate,
TailTruncate Selection(σ)

Worksheet Schema
Manipulation

DeleteColumn, RenameColumn,
Nest/Unnest

Delete,Update,
Nest(η),Unnest(μ)

Worksheet Cleaning AddFunction, MergeInstance Insert, Selection(σ)

Worksheet
Composition Merge, Fuse, LinkService Union(∪),Join()

Worksheet Export Sink －

This operator is defined as a formula: import(sid, mapping, …) ,
where sid specifies which data service to import and a mapping
indicates a parameter assignment denoted by a tuple <param,
style, ref>. An import operator can take more than one mapping
according to the number of parameters of the specified service.
The fields of the mapping tuple are described as follows: 1).
param indicates the name of the parameter of the imported service
to be assigned; 2). style can be set as one of the two constant
variables: CONSTANT and MASHUP_PARAM, which indicate
the manner of parameter assignment. 3). ref has different semantic
meaning that depends on the value of style. When mapping style
is CONSTANT, ref represents a constant value. When mapping
style is MASHUP_PARAM, ref represents a parameter reference
of the target composite Data Service.

CreateSheet
The CreateSheet operator is to create a new worksheet by copying
a sub-relation or an atomic attribute from one of the current
worksheets. The corresponding formula for this operator is:
createSheet(col), where col can be a sub-relation or an atomic
attribute. For example, createSheet(theaters/movies) will create a
new worksheet which presents the movies relation.

Filter
The Filter operator is to filter a worksheet with certain condition.
It can be defined as a formula like this: filter(col, conditions),
where col can only be the name of a relation or sub-relation,
conditions is a group of condition expressions defined on the
atomic attributes of this sub-relation. This operator is equivalent
to the recursive selection operation of the nested relational model.
Sort
The Sort operator is to sort tuples in a worksheet according to
values of a certain attribute. It can be defined as a formula like
this: sort(col, order), where col can only be the name of atomic
attribute, order indicates the sorting order: ascending or
descending. This operator corresponds to a recursive selection
operation with an “order by” clause for the nested relational
model.

HeaderTruncate/TailTruncate
The HeaderTruncate and TailTruncate operator are to truncate the
unwanted instances defined as a formula header(count) and
tail(count), where count is the number of rows that the user wants
to keep back. It can be very helpful when there are too many rows
in a worksheet and when one wants to focus on the rows at the
front or at the back.

DeleteColumn/RenameColumn
The DeleteColumn/RenameColumn operators are to delete a
column from a worksheet or rename it. It can be defined like this:

delete(col) and rename(col, name), where col can be an atomic
attribute or sub-relation, name is new name of the specified
column. This operator is equivalent to the “delete” operation and
“update” operation of the nested relational model.
Nest/Unnest
The Unnest operator is to convert a nested relational model into a
traditional relational model and the nest operator packs the
original relation into a nested form. The Nest and Unnest operator
can be expressed by a formula nest/unnest(col), where col is a
relation or sub-relation of a worksheet.

AddFunction
The AddFunction operator allows users to apply the arithmetic,
statistical and string functions to the data of the MashSheet and
create a new column with the computation results. This operator
is defined as a formula built from column references, row
references, arithmetic functions (e.g., “+”, “-”, “*”, “/”, “int”,
“mod”, “abs”), statistical functions (e.g., “sum”, “avg”, “count”),
string functions (e.g., “copy”, “upper”, “lower”, “replace”) and
constant values.

MergeInstance
The MergeInstance operator selects the distinct instances by
grouping an atomic attribute. It is defined as a formula like this:
mergeInstance(col), where col can only be an atomic attribute.

Merge/Fuse
The Merge operator merges two worksheets. The corresponding
formula like this: merge(a, b, <a.X, b.Y>,…), where both a and b
can only be a relation or sub-relation, X and Y are atomic
attributes of relation/sub-relation a and b. This operator is
equivalent to the recursive union operation of the nested relational
model. If the names of the atomic attributes from two sub-
relations are not the same, a dialog is popped out and let the users
map the attributes.
The fuse operator is defined as a formula fuse(a, b, <a.X,
b.Y>, …), where a, b can only be a relation or sub-relation and X,
Y have the same semantics as they are in Merge operator. This
operation not only merges a, b (the same semantics as they are in
merge operator), but also merges the instances of a (the same
semantics as they are in mergeInstance operator).

LinkService
The LinkService operator imports a Data Service in a different
way from the import operator stated above. Here the Data Service
is dependent on the current worksheet. The LinkService operator
can be defined as a formula like this: linkservice(sid, mapping,…),
where sid is the service unique identification, mapping is a tuple
<param, ref, style>, param is the parameter name of the imported
Data Service, ref is the value of this parameter, ref is the value of
this parameter. Here the style can be of CONSTANT and TYPE.
For the CONSTANT style, ref should be a constant value. For the
TYPE style, ref should be a reference to one of the atomic
attributes of the current sub-relation. It specifies that the value of
the atomic attribute will be assigned to the input parameter of this
Data Service for invocation. When the operator is executed, the
service is invoked directly on a range of rows in an iterative
manner. After the operation is executed, the output of the Data
Service is linked into this worksheet.

For example, a movie search site like http://shenghuo.google.cn
provides a movie list for a given city. A movie review service
provides movie reviews for a given movie with the name as the

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

864

input parameter. The LinkService operator would get the reviews
for each movie in the movie list and join with the movie list in an
iterative way. The illustration is given in Figure 2 and will be
discussed later. Without this operator, separate join would have to
be done after invoking the movie review service for each given
movie.

Sink
The sink operator is defined as a formula sink(option,
mapping, …) , where option indicates which format the user is
going to export the current mashup as, mapping is a tuple <attr,
type>, where attr is the atomic attribute of the worksheet, type is
the element type of the output data. For example, the user can
display a nested table with “longitude” and “latitude” attributes on
an interactive map simply with just a formula like this:
sink(“map”, <longitude, lng>, <latitude, lat>). Mashroom
supports the MashSheet to be exported as a CSV file, a list/table
view, an interactive map, an image gallery, an email message or a
SMS message. The advanced users also can create a new kind of
sink template.

3.4 User Interface
Mashroom is currently implemented as a Firefox extension as
shown in Figure 4. We make use of a toolbar icon to enable users
to discover the Web Sources while browsing the Web pages.
Mashroom validates the web sources as RSS, Atom, RESTful or
HTML Web Sources. For RSS, Atom, RESTful Web Services,
users can directly save them in the Data Service list. For HTML
Web Sources, Mashroom provides a “screen scrapping” interface
for users to label which attribute (column) they want to extract
(like Dapper [18]). The implementation details of this interactive
HTML wrapper will be discussed in other papers of ours [19]. We
make use of a sidebar to enable users to manage the list of Data
Services and Mashup Scripts.

pop-up menu for
atomic attribute

pop-up menu
for new column

Mashroom
Toolbar

M
as

hr
oo

m

Si
de

ba
r import

direct manipulation
on nested table

Figure 4. The Interface of Mashroom

3.4.1 Screen Layout
In traditional spreadsheet applications, the entire window is used
to present one worksheet. Users can navigate other worksheets by
tab clicking. Considering the browser-related user habit, we
design our worksheets layout in a different way. In our design,
worksheets are vertically aligned on the scrolled browser window
and users can scroll the browser window to view those worksheets
unseen in the current screen. Consider there may be many
worksheets, they can be collapsed and extended to save the

presentation space. When a new worksheet is imported, by default,
this new worksheet is arranged automatically at the bottom of the
current worksheets. Therefore, users can understand the
worksheet arrangement in a consistent way. In addition,
worksheets can be narrowed by dragging the right edge so that
several worksheets can also be horizontally aligned for operating
convenience.

3.4.2 Operator Visualization
There are different ways to express the operations. Users can
import a Data Service by double-clicking the item in the service
list. Clicking on different types of column will pop up different
menus. The DeleteColumn, RenameColumn, Filter, Sort,
MergeInstance, LinkService and AddFunction operators can be
triggered though the pop-up menu. The pop-up menu is showed in
Figure 4. Figure 5 (a) shows the LinkService menu item, the
“mapping” construction dialog and the result worksheet. Similar
with LinkService, users can describe the AddFunction operator by
a calculator-like dialog.

The Merge and CreateSheet operator is adequate to be triggered
through direct drag and drop manipulation instead of through pop-
up menu. Figure 5 (b) illustrates how the drag and drop
manipulation work. Users can drag the “items” column on
“sheet1” and drop it on the “items” column on “sheet0” for the
Merge operation, or drag the “link” column to the blank rectangle
for the CreateSheet operation.

We discover that not all operators can be expressed by contextual
menu or drag/drop manipulation. It is partly because some
operators are very similar in their semantics. For example, the
Fuse operator is very similar with Merge operator in semantics.
And it is very difficult to deign different drag/drop manipulation
for them. Some operators are more complicated, and it is not
convenience to be expressed by contextual menu or drag/drop
manipulation. As shown in Figure 5 (c), we design a formula
input box to display or edit the operators. We use SIMILE AJAX
library from MIT [17] in implementing the pop-up menu and the
column drag & drop utility.

4. Trial Application
Newest Movie Information Service is a good candidate mashup
application for demonstrating Mashroom capabilities. Usually,
users need to collect the movie show information and the related
movie reviews from various websites and publish the information.
We believe that there are many web integration applications
similar to this scenario which combines data from different web
sites to give an integrated view.

In this scenario, a user launches the mashup to get the newest
movie information. Figure 6 illustrates this sample mashup. At
first, the movie show information from shenghuo.google.cn and
imdb.cn should be integrated into the mashup application. In
Mashroom, “googlemovieDS” and “IMDBDS” Data Services are
created by labeling two sample Web pages from two Web Sources.
Then, the two Data Services are imported into the editor as two
worksheets (step 1 and 2). Then, they are merged into one by
dragging the column (items) of worksheet and dropping on the
other (step 3).

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

865

double clicking
for importation

LinkService
operator

LinkService
Dialog

Select Data
Service

mapping

Google Movie Worksheet
Linked With Douban

“subjectID” Search Service

Google Movie
Worksheet

(a) LinkService menu item and the poped up dialog

Items(10 items)

Google Search
Results(sheet0)

Yahoo Search
Results(sheet1)

drag and drop
drag and drop
to blank space

(b) drag and drop to merge two worksheets or create a new worksheet

formula bar

(c) formula bar

Figure 5. Operator Visualization

The next task is to integrate the movie reviews from douban.com
(a popular Chinese web 2.0 site for movie and book review). This
can be done by searching the related movie reviews by the name
on the merged movie list. However, here the user comes across a
common issue in building such mashups. The user can’t search
Douban by the name of a movie for the reviews. However, the
user can get the reviews once she has the “subjectID” (the
internal number for each movie in Douban). Therefore, in order to
get the movie reviews, the user has to find this “subjectID”. And
then triggers the LinkService operator (step 4) to invoke the
“MovieSearchDS” Data Service for “subjectID”. Note that the
title attribute is a required input for the “MovieSearchDS” Data
Service.

Although we can search for “subjectID” by the name of a movie,
the result she gets (after step 4) is a list of “subjectID” that
matches the name approximately instead of the precise
“subjectID” matches the name exactly. This issue can be
overcome by filtering the search result by the name. For example,
the user can filter out the inexact movie using the formula
Filter(G/MovieSearchResults/title, contains, G/title), where
G/title is the “title” column of the worksheet, and
G/MovieSearchResults/title is the “title” column of the movie

review search results table embedded in the worksheet. This is
what Mashroom has done in step 5.

Till step 5 the user eventually gets the exact “subjectID” of the
newest movie list. So in step 6, “MovieReviewsDS” Data Service
is linked in the worksheet by triggering “LinkService” and setting
“subjectID” as its input value.

Once the user gets the result worksheet, she can associate the
result with a presentation view by triggering the “sink” operator.
Here the user associates the result with a “list” view. This output
can be used to be started up every day to generate the newest
movie information and be published on a web site.

Figure 6 also illustrates the relationship between Mashroom data
flow and the nested relational query. Note that the “LinkService”
operator is followed up by a join between the service invocation
result and the relational data on the current worksheet.

Table 2 gives the serialized Data Mashup script in XML format in
Mashroom implementation. The Mashroom’s mashup engine
parses the XML representation into a sequence of instructions. It
then executes the instructions (currently in a serialized way) and
emits the result MashSheet. To save space, the 16 byte universally
unique identifier was abbreviated as “xx”.

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

866

1) actor:Import
actorIn:GoogleMovieDS
<city,＂Beijing＂,MASHUP_PARAM>

5) actor:Filter
actorIn:Items/Items/title,
contains,
Items/Title

4) actor:LinkService
actorIn:MovieSearchDS,
<$title, items/title>

6) actor:LinkService
actorIn:
MovieReviewsDS
<$subjectID,
Items/Items/subjectID>

7) actor:Sink
actorIn:＂listview＂
=>NewestMovieList.widget

2) actor:Import
actorIn:IMDBDS

3) actor:Merge
actorIn:
sheet1.Items,sheet2.Items,
<sheet1.Items/title,
sheet2.Items/label>

Google∪Imdblabel=title

Sheet1:
G(title,director,actor)

Sheet2:
I(label, director,actor)

MovieSearchResult(subjectID,title)
abbreviate as M(subjectID,title),

σ (Sheet1)(Items/title == title)

ReviewsSearchResult(subjectID,
reviewLink,summary) abbreviate as R,

(Sheet1, M)

Sheet1: G(title,director,actor)

Sheet1: G(title,director,actor,
M(subjectID,title))

Sheet1: G(title,director,actor,
(subjectID,title))

(Sheet1(M), R)
Sheet1:
G(title,director,actor,M(subjectID,title,
R(reviewLink, summary)))

Figure 6. Data Flow Representation of a Data Mashup Script

Table 2. Data Mashup Script Description
<?xml version="1.0" encoding="GBK"?>
<mashup id="xx" name="movie mashup" description="" encoding="GBK">
 <params><param name="city" label="city">Beijing</param></params>
 <script>
 <import ref-service="googlemovieDSId" ref-datasheet="sheet1" id="xx">
 <mapping id="xx" param-name="city" style="MASHUP_PARAM" ref-mashup-
param="city" /> </import>

<import ref-service=”IMDBDSId” ref-datasheet=”sheet2” id=”xx”></import>
<fuse id=”xx”>
 <typepair ref-from-type="sheet1:items/title" ref-to-type="sheet2:items/label" />
 ……
 </fuse>

 <serviceFunction ref-type="sheet1:items" ref-service="MovieSearchDS"
id="xx">
 <mapping id="xx" param-name="search_text" style="TYPE" ref-
atom="items/title" />

</serviceFunction>
<filter ref-type="sheet1:items" id="xx">
 <and><atom atom-key="items/items/title" rop="CONTAINS" ref-to-

type=”items/title” /></and>
 </filter>

 <serviceFunction ref-type="sheet1:items" ref-service="MovieReviewsDS"
id="xx">
 <mapping id="xx" param-name="subject" style="TYPE" ref-
atom="Items/Items/subjectID" />
</serviceFunction>
<sink> <option>listview</option> </sink>

 </script>
</mashup>

5. Evaluation
To demonstrate the contributions of this paper, we conducted a set
of experiments that highlight the expressivity and usability
especially for end users.
To come up with a comprehensive evaluation, we first selected 10
popular mashups from the Yahoo! Pipe community (those have high
“clone” number), two mashup directories (programmableWeb.com
and mashupAwards.com) and a set of other typical mashups. Then
we qualitatively studied the mashup creation process in Mashroom.
For each mashup, we gave the URLs address for each of the Web
Sources.

We also assigned category names to describe what types of mashup
applications can be built using Mashroom. Following the “Mashup
Patterns” research by Jeffrey Wong et.al [20], we found that there
are four interesting sub-categories of mashups in the “Aggregation”
category. These sub-categories can be divided into 6 Mashroom
worksheet manipulation and composition patterns (M&C patterns
for short).
We conducted a user study with 5 groups of people to measure the
average time to build a mashup. The users are familiar with
spreadsheets. In order to make them understand the Mashroom way
of building a mashup, we gave them an example for each sub-
category of mashup. The average time to build each mashup was
recorded. The results are given in Table 3.

Aggregation for Collection (same kind of Web Sources). These
mashups combine the same kind of Web Sources such as news,
videos and pictures from different websites into one single
worksheet and represent this worksheet as a Web page, a feed, or on
a map.
“Aggregated News Alerts” sets up a persistent search at Bloglines,
Google Blog Search, Microsoft Live News etc. Mashroom provides
an easy way to build such a mashup. The query term parameter of the
first imported Data Service should be configured as the parameter of
the mashup, so that the parameter of the following imported Data
Service can be then mapped to it. The user drags the worksheets’
header columns and drops them on the first worksheet for “merge”
operation. The mashup “Google and Yahoo News” and “Top
Videos” also fall into this category. The process about how the Data
Services are aggregated has a common pattern called “similarity
aggregation without dependency” pattern as Figure 7(a) shows.

Aggregation for Comparison (same kind of Web Sources). Some
of the mashups of aggregating different web sites especially in the
e-business domain not only combine the data together but also
compare them clearly. For instance, the “Book Price Comparison”
mashup compares the price of the same book from dangdang.com
and amazon.cn shopping web sites. Different from the “similarity
aggregation without dependency” M&C pattern, after the Data
Services are imported into the worksheet area, the user creates a
new column labeled with both the price and the source using the
“AddFunction” operator. Without this operation, it is not clear to
differentiate the prices from different web site.

Focus View or Data Analysis (single Web Source). These
mashups don’t combine different kinds of web sites. They give a
focus view for a large web site or do data analysis work for data
from a single web site. For instance, the mashup “Focus View of
YouTube Video” aims to list YouTube videos of a certain category
or tag. “eBay Price Watch” aims to find eBay items within a certain
price range. Different from the “similarity aggregation without
dependency” M&C pattern, it is not necessary to map the attributes
when the user triggers the “merge” (or “fuse”) operator because the
worksheets have the same schema.

Aggregation for Collection (different kinds of Web Sources with
dependency). These mashups combine different kinds of web sites
and generate an integrated view that a single web site can’t afford to
provide. The Data Services are dependant on each other. For
instance, in the “Neighborhood Pictures” mashup, the
“neighborhood name” parameter of the imported “Search Flickr”
Data Service is the output of the “Yelp Neighborhood Search” Data
Service. Users can express the Data Service dependency by
triggering the “LinkService” operator, and selecting one of the
columns as the new imported Data Service’s input parameter.

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

867

Table 3. Selected Mashups, Patterns and Experiment Results

CATEGORY M&C PATTERN MASHUP WEB SOURCES DESCRIPTION TIME
(minutes)

Google and
Yahoo Search
Results

http://www.google.com/
http://www.yahoo.com/

Search Google and Yahoo, then merges the
results together
parameters: Keyword

< 1

Aggregated News
Alerts

http://www.bloglines.com/search
http://search.live.com/news
http://blogsearch.google.com,etc

Setup a persistent search at Bloglines,
Google Blog Search, MSFT Live News, etc.
parameters: Keyword

< 2

Aggregation for
Collection

(same kind of
Web Sources)

“similarity
aggregation

without
dependency”

pattern
Top Videos http://video.baidu.com

http://video.google.com
List the most popular videos at Google Video
and Baidu Video web sites. < 2

Aggregation for
Comparison

(same kind of
Web Sources)

“similarity
aggregation with

comparison”
pattern

Book Price
Comparison

http://book.dangdang.com/
http://www.amazon.cn/mn/searchApp

Compare the price of the same book from
different shopping web sites
parameters: book search keyword

< 2

eBay Price Watch http://rss.api.ebay.com/ws/rssapi Find eBay items within a certain price range
parameters: Keyword, max price, min price

< 2 Focus View or
Data Analysis
(single Web

Source)

“focus view or
analysis” pattern Focus View of

YouTube Video
http://www.youtube.com List of YouTube videos of a certain tag or

category
parameters: tag or category

< 2

Neighborhood
Pictures

http://api.yelp.com/neighborhood_search
http://www.flickr.com/search/

Find out the neighborhoods and their related
pictures < 2

“aggregation with
dependency”

pattern
My tracks on
eBay

http://ws.audioscrobbler.com/2.0/?method=user.g
etlovedtracks&user={userid}&api_key={key}
http://open.api.ebay.com/shopping?callname=Find
Items

Find out the auctions on eBay of the user’s
loved tracks
parameters: userID, api_key

< 3

“search subjectID
first” pattern

Newest Movie
Info

http://shenghuo.google.cn
http://api.douban.com/movie/subjects
http://api.douban.com/movie/subject/{subjectID}/re
views

The movies on show and the related reviews.

< 4

Aggregation for
Collection

(different kinds
of Web

Sources)

“aggregation with
dependency” &

“search subjectID
first” pattern

All-around info
about the movies
on show

http://shenghuo.google.cn
http://api.douban.com/movie/subject/{subjectID}/re
views
http://zh.wikipedia.org/;http://www.flickr.com/searc
h/

Reviews, pictures and wikipedia links of a
loved movie

< 4

A common mashup we encountered is to search the related
information of a subject (for example, reviews of a movie) by its
name. However, we often come across a common issue in
building such mashups. We can’t get the information directly by
the name of the subject. So we should search the “subjectID” first
and then use it to search the related information. The detailed
process has been introduced in Section 4. This “search subjectID
first” M&C pattern is depicted in Figure 7(d) at the right.

The “All-around info about the movies on show” mashup
combines the movie reviews, the corresponding pictures and
hyperlinks together. This mashup follows the hybrid M&C pattern
of “aggregation with dependency” and “search subjectID first”.

Comparing to the flow-chart-like programming experiences,
operations are applied to the data directly, and some complex
control operations are hidden from users. As a result, the mashup
operations are simplized apparently. Take the “sort” operation as
an example, to sort a feed by one item attribute, a “sort” module
needs to be imported and connected to the source using Yahoo!
pipes. While in Mashroom, users can sort the source directly by
clicking on the column’s pop-up menu item. The “LinkService”
operator is another example. It encapsulates a loop that invokes a
data service for all values of a column. And what’s more, the
learning curve of building a mashup application is shortened.
Users need not to understand how to build up a sequence of
operators at the beginning. They play an operator directly on the
data and can see the changed data immediately. They can try to
build a simple mashup application with little guidance at the
beginning. Once the examples are given for each mashup pattern,

they are able to complete the more complex mashup creation work
without difficulty.

In summary, to verify the expressiveness of Mashroom, we
described what mashup applications can be built using Mashroom.
Our user tests showed that end users can use Mashroom to build
the above categories of mashup applications effectively and
efficiently.

6. RELATED WORKS
The programming model adopted in mashup editors generally falls
into one of four categories: 1). flow-chart-like programming.
Data services are processed in a manner similar to flow-chart.
Yahoo Pipes, Microsoft Popfly, IBM Damia and Marmite fall into
this category. The flow-chart-like mashup editors often provide a
set of flow-chart-based graphical operators and adopt a flow-style
orchestration specification. 2). spreadsheet-like programming.
Data services are processed in a manner similar to spreadsheets.
SpreadMash [21] and C3W [22] fall into this category. 3). tree-
based programming. Data services are combined based on a tree
structure. The old version of Intel MashMaker [4] falls into this
category. 4). browser-centric programming. This kind of
programming doesn’t change the user experience of using a
general browser. This programming model enables users to build
mashups while browsing the web sites. It doesn’t provide specific
mashup editor, but provide mechanisms for users to trigger the
mashup operations in the context of browsing. Ubiquity [23] and
d.mix [24] fall into this category.

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

868

1) actor:Import
actorIn:DataService-A
<paramA,＂value＂,
MASHUP_PARAM>

4) actor: Worksheet
Manipulation & Cleaning
Operators (Filter, Sort,
MergeInstance…)

5) actor:Sink

2) actor:Import
actorIn:DataService-B
<paramB,paramA,MASHUP_P
ARAM >

3) actor:Merge or Fuse
actorIn:
sheet1.A,sheet2.B,
<sheet1.A/C1, sheet2.B/D1>
…

Sheet1:
A(C1,C2,…)

Sheet2:
B(D1, D2, …)

…

(a) “similarity aggregation without dependency” pattern

1) actor:Import
actorIn:DataService-A
<param1,
＂value1＂,MASHUP_PARAM>

4) actor: Worksheet
Manipulation & Cleaning
Operators (Filter, Sort,
MergeInstance…)

5) actor:Sink

2) actor:Import
actorIn:DataService-A
<param2,
＂value2＂,MASHUP_PARAM>

3) actor:Merge or Fuse
actorIn:
sheet1.A,sheet2.A,

Sheet1:
A(C1,C2,…)

Sheet2:
A(C1, C2, …)

…

(c) “focus view or analysis” pattern

1) actor:Import
actorIn:DataService-A
<paramA,＂value＂,
MASHUP_PARAM>

actor: AddFunction
actorIn:
e.g.COPY ($B/price) + “B”

5) actor:Sink

actor:Import
actorIn:DataService-B
<paramB, paramA,
MASHUP_PARAM>

3) actor:Merge or Fuse
actorIn:
sheet1.A,sheet2.B

Sheet1:
A(C1,C2,…)

Sheet2:
B(D1, D2, …)

…

…
2) actor: AddFunction
actorIn:
e.g.COPY ($A/price) + “A”

4) actor: Sort by String
actorIn: A.C1

(b) “similarity aggregation with comparison” pattern

1) actor:Import
actorIn:DataService-A
<paramA,＂value＂, CONSTANT or
MASHUP_PARAM>

4) actor: Filtering Operators
(Filter, Truncate)

6) actor:Sink

2) actor:Import
actorIn:DataService-B
<paramB,paramA,MASHUP_PARAM> or
<paramB,＂value＂,CONSTANT or
MASHUP_PARAM>

3) actor:Merge or Fuse
actorIn:
sheet1.A,sheet2.B,
<sheet1.A/C1, sheet2.B/D1>
…

Sheet1:
A(C1,C2,…)

Sheet2:
B(D1, D2, …)

…

5) actor:LinkService
actorIn:
DataService-C
e.g. <$P, C1>

6) actor:LinkService
actorIn:
DataService-D
e.g. <$P, D1>

1) actor:Import
actorIn:SearchSubjectID

3) actor: Filter
actorIn:
Sheet1.A,
<A/SearchResults/Title,
contains, A/Title>

5) actor:Sink

2) actor:LinkService
actorIn:
SearchSubjectID
<$P, sheet1.A/Title>

Sheet1:
A(Title,…)

4) actor:LinkService
actorIn:
SearchContents
e.g. <$P,
A/SearchResults/subjectID>

(d) “aggregation with dependency” pattern (left), “search

subjectID first” pattern (right)
Figure 7. Worksheet Data Manipulation & Composition (M&C) Patterns in Mashroom

As discussed at the beginning of this paper, spreadsheet-like
programming is more adequate for end users compared with flow-
chart-like programming. But the traditional two-dimensional
spreadsheet can’t process and present the complex data in a nested
table. Though the tree-based programming overcomes the
disadvantages of the traditional spreadsheet programming by
supporting more complex data, it is not convenient to define
operations conducted on several nodes. Mashroom programming
model takes the nested table as the graphical data structure and
combines it with spreadsheet style programming.

C3W features with its ability to clip some input and result elements
from a Web page to form cells on a spreadsheet. But unlike C3W,
Mashroom first encapsulates unstructured and semi-structured web
data resources as uniform services and import services to form
blocks of cells on a spreadsheet-like worksheet. Therefore, once the
Web pages are encapsulated as services in Mashroom, it can be
reused and combined with other services without considering about
how to extract the items from a Web page using XPath as in C3W.
SpreadMash also supports the complex data object by extending the
traditional spreadsheet. One of the main characteristics of

SpreadMash is that it provides reusable “data widget” to implement
the importation, presentation and composition of the complex data
objects. SpreadMash allows users to define the layout and space
dependency of the complex data objects on a worksheet. So a lot of
work in SpreadMash is to define the formula syntax and semantics
to express the data layout and space dependency. Different from
SpreadMash, Mashroom provides each complex data object a
default layout. The layout and space dependency of data objects are
meaningless in Mashroom. Considering the nested table is only a
temporary view during the mashup building process, and not the
view of the ultimate mashup application, we believe that the default
layout is enough for the users.
Based on the above analysis, we come to a conclusion that
Mashroom programming model goes beyond the other categories for
end users, and, even compared with the other spreadsheet-like
programming model, Mashroom programming model offers superior
characteristics in some aspects.

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

869

7. CONCLUSIONS
For the past two years, Internet-related mashups have been boomed
as a potential candidate for the next market opportunity and have
become one of the biggest buzzwords in the web application area.
However, comprehensive development tools, frameworks and
programming models are lagging behind. In this paper, we have
provided a programming model for building mashups by end users.
We have discussed the design philosophy, the abstraction of mashup
applications, and the implementation and evaluation issues
associated with end-user mashup programming. The contributions
are that we combine the nested table with the spreadsheet-like
programming. The innovation has been verified to be effective by
the experiment and case study results.

8. ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science
Foundation of China under Grant No.60573117, the National Basic
Research Program of China under Grant No.2007CB310804, the
China Postdoctoral Science Foundation under Grant
No.20080430528, and Huawei Technologies Co., Ltd. We thank
Zhuofeng Zhao and Haifang Fu for their support. We also thank
Hongshen Liao, Yanyan Cheng and Guang Ji who helped in
developing Mashroom.

9. REFERENCES
[1] Simmen, D. E.; Altinel, M.; Markl, V.; Padmanabhan, S.;

Singh, A. Damia: data mashups for intranet applications,
SIGMOD '08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, ACM, 2008,
pp. 1171-1182.

[2] Yahoo Pipes, Inc. http://pipes.yahoo.com/, 2008.
[3] Microsoft Popfly, http://www.popfly.com/, 2008
[4] R. Ennals and D. Gay. User-friendly functional programming

for web mashups, In Proceedings of the 12th International
Conference on Functional Programming (ICFP), Freiburg,
Germany, 2007, pp. 223-234.

[5] Robert J. Ennals , Minos N. Garofalakis, MashMaker: mashups
for the masses, Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, June 11-14,
2007, Beijing, China

[6] J. Wong and J. I. Hong, Making mashups with marmite:
towards end-user programming for the web, In Proc. of the
2007 conference on Human factors in computing systems
(CHI), San Jose, California, USA, 2007, pp. 1435-1444.

[7] Makinouchi, A. A consideration of normal form of not-
necessarily-normalized relations in the relational data model. In
Proceedings of the 3rd VLDB Conference (Tokyo), 1977, pp.
445-453.

[8] Laender, A. H.; da Silva, A. S.; Golgher, P. B.; Ribeiro-Neto,
B.; Evangelista Filha, I. M.; Magalhaes, K. V. The Debye
environment for Web data management. Internet Computing,
IEEE 2002, 6, (4), pp. 60-69.

[9] Embley, D. W.; Campbell, D. M.; Jiang, Y. S.; Liddle, S. W.;
Lonsdale, D. W.; Y-K Ng.; Smith, R. D. Conceptual-model-
based data extraction from multiple-record Web pages. Data
Knowl. Eng. 1999, 31, (3), pp. 227-251.

[10] Filha, I.M.R.E., Laender, A.H.F., and Silva, A.S.D. Querying
Semistructured Data By Example: The QSByE Interface. In
Proceedings of Workshop on Information Integration on the
Web. 2001, pp. 156-163.

[11] Qin Z., Yao B. B., Liu Y., and McCool M. D., A Graphical
XQuery Language Using Nested Windows, In Proc. of 5th Int.
Conf. WISE, Brisbane, Australia, 2004, pp. 681-687

[12] B. A. Nardi,; J. R. Miller, The Spreadsheet Interface: A Basis
for End User Programming, HP Labs Technical Reports,
http://www.hpl.hp.com/techreports/90/HPL-90-08.pdf, 1990

[13] Myers, B.A., Ko, A.J., and Burnett, M.M. Invited research
overview: end-user programming. In Proceedings of CHI
Extended Abstracts. 2006, pp. 75-80.

[14] Cypher, Allen, ed. Watch What I Do: Programming by
Demonstration, MIT Press, Cambridge MA, 1993.

[15] Lieberman, H. (Ed.) 2001. Your Wish is My Command:
Programming by Example. San Francisco: Morgan Kaufmann.

[16] Colby, L. S. A recursive algebra and query optimization for
nested relations. SIGMOD Rec. 1989, 18, (2), pp. 273-283.

[17] AJAX-SIMILE, http://simile.mit.edu/ajax/, 2007
[18] Dapper: The Data Mapper. http://dapper.net. 2008
[19] Shaohua Yang, Guiling Wang, Yanbo Han. Grubber: Allowing

End-Users to Develop XML-based Wrappers for Web Data
Sources. The Joint International Conferences on Asia-Pacific
Web Conference (APWeb) and Web-Age Information
Management (WAIM), Suzhou, China. 2009, pp. 645–650.

[20] Wong, J.; Hong, J. What do we "mashup" when we make
mashups? WEUSE '08: Proceedings of the 4th international
workshop on End-user software engineering, ACM, 2008, pp.
35-39.

[21] Woralak Kongdenfha, Boualem Benatallah, Régis Saint-Paul,
Fabio Casati. SpreadMash: A Spreadsheet-Based Interactive
Browsing and Analysis Tool for Data Services, CAiSE, 2008,
pp. 343-358.

[22] J. Fujima, A. Lunzer, K. Hornbaek, etc. Clip, connect, clone:
combining application elements to build custom interfaces for
information access, In Proc. of the 17th Annual ACM
Symposium on User Interface Software and Technology
(UIST), 2004, pp. 175-184.

[23] Ubiquity. http://labs.mozilla.com/projects/ubiquity/. 2008
[24] Hartmann, B.; Leslie, W. u.; Collins, K.; Klemmer, S. R.

Programming by a sample: rapidly creating web applications
with d.mix, UIST '07: Proceedings of the 20th annual ACM
symposium on User interface software and technology, ACM,
2007, pp. 241-250.

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

870

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

