WWW 2009 MADRID!

Track: Data Mining / Session: Text Mining

Efficient Overlap and Content Reuse Detection in Blogs
and Online News Articles:

Jong Wook Kim
Comp. Sci. and Eng. Dept.
Arizona State University

K. Selguk Candan
Comp. Sci. and Eng. Dept.
Arizona State University

Junichi Tatemura
NEC Labs, America
10080 Wolfe Rd,

Tempe, AZ, Tempe, AZ, Cupertino, CA,
85287, USA 85287, USA 95014, USA
jong@asu.edu candan@asu.edu tatemura@sv.nec-

labs.com

ABSTRACT

The use of blogs to track and comment on real world (po-
litical, news, entertainment) events is growing. Similarly, as
more individuals start relying on the Web as their primary
information source and as more traditional media outlets try
reaching consumers through alternative venues, the number
of news sites on the Web is also continuously increasing.
Content-reuse, whether in the form of extensive quotations
or content borrowing across media outlets, is very common in
blogs and news entries outlets tracking the same real-world
event. Knowledge about which web entries re-use content
from which others can be an effective asset when organiz-
ing these entries for presentation. On the other hand, this
knowledge is not cheap to acquire: considering the size of
the related space web entries, it is essential that the tech-
niques developed for identifying re-use are fast and scalable.
Furthermore, the dynamic nature of blog and news entries
necessitates incremental processing for reuse detection. In
this paper, we develop a novel gSign algorithm that effi-
ciently and effectively analyze the blogosphere for quotation
and reuse identification. Experiment results show that with
gSign processing time gains from 10X to 100X are possi-
ble while maintaining reuse detection rates of upto 90%.
Furthermore, processing time gains can be pushed multiple
orders of magnitude (from 100X to 1000X) for 70% recall.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Content Anal-
ysis and Indexing

General Terms

Experimentation, Performance

Keywords
Reuse detection, Weblogs

*This work has been partially supported by the NSF Grant
“MAISON: Middleware for Accessible Information Spaces on
NSDL (0735014)”.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2009, April 20-24, 2009, Madrid, Spain.

ACM 978-1-60558-487-4/09/04.

81

Figure 1: (a) News entries and the existing hyper-
links between them, (b) reuse and quotation links
established after the reuse analysis, and (c) times-
tamps, focus, or flow analysis can be used for estab-
lishing navigational directions.

1. INTRODUCTION

Weblogs, also known as blogs, are becoming important
forms of individual-driven media outlets due to their sim-
plicity, availability, and flexibility. According to [1], the bi-
ogosphere is doubling once every 5 months and upto 40,000
new blogs are being created each day. While some of these
blogs are personal journals, a significant portion of the blo-
gosphere consists of filters and notebooks, which are tracking
real-world events, such as political news, sports, technology,
or entertainment [13]. As more individuals start relying on
the Web as their primary information source (and outlet),
a parallel development is also observed in more traditional
(print and broadcast) media outlets: in order to reach con-
sumers through alternative venues (and thus increasing their
advertisement revenues), the number of news sites on the
Web is also continuously increasing.

While the numbers of these sites grow, the same cannot
be said about the unique content: as it can be attested
by anyone who has looked through a list of news articles
grouped together using automatic generated news sites (such
as Google News websites [3] and Yahoo News [5]), content-
reuse (whether in the form of extensive quotations or content
borrowing across media outlets) is very common in blogs and
news outlets tracking the same real-world event.

During the past few years, there has been growing re-
search on analysis of information flow within the blogo-
sphere. [19] for example introduces and analyzes community
graphs, where edges indicate how one blog communicates
with another. Adar et al. [8] also considers information prop-
agation across blog entries, but relies on the embedded hy-
perlinks. However, while explicit hyperlinks provide a fairly
good indicator of content-wise relatedness in the more gen-

WWW 2009 MADRID!

o if_éREADoNNEws | |

Track: Data Mining / Session: Text Mining

SOURCE: http:ifwnanw. nytimes.comi2007/05/1 6/tech. ..

some slick new phones and a little celebrity gloss.

designed to play music, video and games.

gaining ascendance in the United States.

and that we have always had our head down."

Beckham and the race car driver Danica Patrick.

READONNEWS, keep reading on ...

New Motorola Phones Aim At High-End Market

Motorola, the mobile phone giant, is hoping to revive its deteriorating business prospects with

At an event today in New York, the company announced a sequel to the company’s hit Razr
phone; an update to the Motorola Q, its rival to the BlackBerry; and a new line of handsets

The phones are aimed at the more expensive end of the market and are optimized to work on
high-speed third-generation wireless networks, currently popular in Europe and Asia and

‘These phones are aimed at classy users we haven't been addressing,” said Motorola’s chief
executive, Edward J. Zander, who has been guiding the company through a turbulent yearlong
downturn while fending off the billionaire financier, Carl C. Icahn, who unsuccessiully sought a
seat on the company’s board. “We are demonstrating we can still build some great products,

The new phones were infroduced at a dance studio in the Chelsea neighborhood of Manhattan,
and recorded video demonstrations included the singer Fergie, the soccer star David

The _Raz_r 2_§_s a Eo_!tow—_u_p tq__t_he pri_ginal Razr, introduced in 2004. Motorola said that it in a few

(What to read next?

"phones look good. No denying
lthat . But, they have an intesesting
ltarget. “These phones are aimed at

|executive, Edward J. Zander;

\Anything more specific?
"I read stuff |ike this and all it doss is
provide me with more faith in the fact

i
< , E d J.
ng to several analysts

who attended the event.”.

Figure 2: A hypothetical news site, which help readers to observe quotations and content-borrowings across
news entries and further help the user to pick among such related entries in an informed manner

eral Web content, the same cannot be said for blog and news
entries [28, 29]. In fact, knowledge about which web entries
re-used content or quoted from which others must also be
leveraged when organizing (e.g., assessing, ranking, and link-
ing) these entries for presentation (Figure 1). For example,
Figure 2 depicts a hypothetical news site, designed to help
readers to observe quotations and content-borrowings across
news entries and further help the user to pick among such re-
lated entries in an informed manner. Quotation-based links
also can be used for navigating between related books. For
example, [30] presents a novel user interface for navigating
between books by using links based on quotations, which is
currently used in Google Book Search [4]. While we are not
focussing on how to leverage reuse information for effective
presentation, in this paper we concentrate on the problem
of efficient detection of content reuse.

1.1 Related Work

Reuse detection metric: Reuse detection is an im-
portant problem that has implications in various applica-
tion domains, including copy (plagiarism) detection and bi-
ological sequence mining. A particular challenge in reuse
detection is that re-use can happen at different levels and
detecting different types of reuses can require different tech-
niques. Established techniques include information retrieval
measures [33, 18, 36, 20] and fingerprinting [12, 34, 31, 24,
14, 26, 32], where the document is treated as a sequence of
symbols and substring (g-gram) based finger-prints are ex-
tracted from the documents. In particular, COPS [15] and
SCAM [36] focus on the problem of copy prevention. [36]
identifies four different types of reuse: plagiarism, subset,
copies, and related and shows that different test are appli-
cable for different types of reuse. While COPS relies on
sentence chunking, SCAM applies word chunking for more
precise detection.

In this paper, our focus is not on developing better reuse
metrics, but on the efficient identification of reuse in large
collections. Thus, we develop a mechanism for efficient word-
overlap based reuse [33] by mapping sentence domain con-

82

text to a multi-dimensional signature space and leveraging
range searches in this space.

Index schemes: There have been a number of proposals
for finding near-duplicate documents in the database and
web-search communities [21, 37, 10]. The near-duplicate
detection have been used in diverse applications, including
data cleaning and integration in DBMS as well as copy de-
tection in web documents. [38] proposes instance-level con-
strained clustering approach to detect near-duplicated doc-
uments. Similarity join algorithms in the database are used
to find pairs of records whose similarity scores are above
a given threshold [23, 9, 40, 17]. [9] presents algorithms
for computing exact set-similarity joins by converting the
similarity threshold to a threshold on Hamming distance.
[23] exploited g-grams to find similar string pairs in the
database where edit distance between pairs of string is mea-
sured based on the overlap constraints on g-grams, such as
count, position, and length filtering. In [17], the string sim-
ilarity functions are measured as the overlap constraint be-
tween g-grams.

From an indexing perspective, one possible approach is
to apply near neighbor searches in high dimensional spaces
to the problem of duplicate identification [22, 35]. Locality-
Sensitive Hashing [22], which uses several hash functions
so that similar data are mapped to the same buckets with
high probability, is one alternative. Another approach re-
cently applied to duplicate detection is to use inverted list
based algorithms to find all pairs of documents whose sim-
ilarity scores are above a given threshold [10]. We note
that one disadvantage of inverted index-based schemes is
that these do not lend themselves to efficient incremental
implementations, where newly arriving blog and news en-
tries are mapped incrementally against existing entries in
the collection. Another constraint (due to the size of blo-
gosphere and fine-grained, sentence-level reuse detection) is
that, unlike [22], [10], and many others, the underlying in-
dex structure of ¢Sign is implemented on secondary storage
rather than the main memory.

WWW 2009 MADRID!

1.2 Contributions

Knowledge about content-reuse and overlaps is not cheap
to acquire: considering the size of the blog and news space,
the cost of identifying content-overlaps (even within entries
that can broadly be categorized to be similar) can be expen-
sive. In fact, while quotation and reuse detection on digital
documents is not new problem (see Section 1.1), existing
techniques are not suitable for the size and dynamicity of
the blogosphere and online news sites. Thus, it is essential
that the techniques used for identifying re-use are fast and
scalable:

DESIDERATUM 1.1 (EFFICIENT). Considering the size of
the blogosphere, it is essential that the techniques developed
for content-reuse and overlaps are fast and scalable.

More importantly, the dynamic nature of blog and news en-
tries necessitates incremental processing for reuse detection.

DESIDERATUM 1.2
be an incremental process in that whenever a new contents
is provided, it is compared to entries in the data collection
to find reuses.

Thus, in this paper, we develop a novel gSign algorithm
that efficiently and incrementally analyze the blogosphere
for quotation and reuse identification. In particular, we pro-
pose an indexing scheme to prune sentences whose reuse
scores are predicted with high probability to be less than
a given threshold. Note that [39] showed that for boolean
keyword queries inverted index based schemes outperform
signature based schemes. In this paper, we show that appro-
priately designed signature based schemes can in fact out-
perform inverted index based schemes in the context of reuse
detection. Intuitively, this is due the fact that while Boolean
query processing necessitates investigation of all signatures
which have at least one matching bit with the query, can-
didate selection for reuse detection is based on a similarity
measure which lends itself to indexing and pruning. Conse-
quently, not all signatures which have a matching bit need
to be investigated for candidate selection. This provides
significant savings that were not possible in Boolean key-
word query processing and helps signature-based scheme we
present in this paper to outperform state-of-the-art inverted
index based scheme in reuse detection task. Experiments in
Section 3 show that gSign algorithm significantly improves
the reuse detection speed efficiency and provides high recall
and precision. Processing time gains can be pushed multiple
orders of magnitude (from 100X to 1000X) for 70% recall.
Furthermore, when we adapted state-of-the-art duplicate de-
tection technique [10] into sentence-based reuse detection
problem, gSign provides time gains from 10X to 100X, while
maintaining reuse detection rates of upto 90%.

2. SCALABILITY IN REUSE DETECTION

As described earlier, there are many metrics for reuse de-
tection. In RECAP [33], Metzler et al. studied various reuse
patterns, including (a) identical, (b) sufficiently overlaping
(common source), and (c¢) some overlap (common knowl-
edge). In particular, [33] showed that, when applied at the
sentence level (as opposed to identifying general topical sim-
ilarity at the whole-document level), the word overlap mea-
sure was competitive when looking for reuse: given a query

(INCREMENTAL). Reuse detection should

83

Track: Data Mining / Session: Text Mining

File : Motorola also displayed a music phone.

Word Signature of word

Motorola 0011 0010

music 0001 1100

phone 0001 0110
Signature of File (bitwise—or) 0011 1110

User Query Signature of user query
(a) match : Motorola 0011 0010
(b) no match : game 1000 0011
(c) false match : television 0010 1010

Figure 3: Signature generation and use

sentence Q and a document sentence R, the degree of word-
overlap is defined as

S(@ Ry = QOB S~ oy N

Q)

See [33] for more detailed description of the algorithm.

Unfortunately, since word-overlap metric requires sentence-
level comparison, detecting content-reuse within a large col-
lection, based on word-overlap metric would be very expen-
sive. In this section, we present an efficient and incremental
gSign algorithm which, while not being exact, can guarantee
word-overlap lowerbounds for reuse detection.

2.1 qgSign: Signature-Indexing for Incremen-
tal Reuse Detection

Consider a naive indexing approach where a sentence-file
stores keyword vectors for the sentences in the collection.
Naturally, given a sentence (from a new blog entry), identi-
fying the reuse by scanning the entire sentence-file to com-
pute the similarity scores for each sentence is likely to be
very costly. One possible solution is to pre-cluster the blog
entries based on the recency. Furthermore, it could also be
possible to mine for independent topics in the collection us-
ing a content-only scheme (such as latent semantic indexing
(LSI)-based method [25]). Yet, since the number of relevant
blog entries can still be large after clustering, it is crucial
to reduce the quotation and reuse computation costs and
render the detection process incremental.

While developing the word overlap measure, [33] observes
that when two sentences have the same source or one sen-
tence is the reuse of the other sentence, two sentences con-
tain a great number of common. In this section, we fur-
ther leverage the observation for developing an index based
filtering scheme (qSign) to eliminate those sentences that
are guaranteed not to produce a high reuse score with a
given query sentence. In particular, we propose a sentence-
signature based mechanism for mapping from the sentence
domain to a multi-dimensional space such that word-overlap
searches can be re-posed as range searches in this space.

2.1.1 Basic Signature Files

Signature files have been used in query processing in large
text databases to screen out most unqualified data [39]. In a
signature file, each word is assigned a fixed-width bit string,
generated by a hash function. File signature is then created
by taking the bitwise-or of all signatures of words that ap-
pear in the file. Figure 3 shows the process of file signature
generation and querying: (a) the file signature matches the

WWW 2009 MADRID!

query if the bitwise-and of the query signature and the file
signature is identical to the query signature; (b) the file sig-
nature does not match the query if the bitwise-and results
in a loss of bits. Note that as shown in Figure 3(c), file
signatures may return false matches: signature comparison
indicates a match, but in fact there is no keyword match
between the file and the query. Therefore, query process-
ing with file signatures need three steps: (1) transforming of
the query into a query signature, (2) searching for the query
signature in file signatures, and (3) elimination of the false
matches.

Generally, the original signature schemes are implemented
in three different ways: bitstring, bitslice and blocked signa-
ture files [39]. In bitstring signature files, each document is
represented as a bitstring of the fixed-width, while in bitslice
signature files, the signature files are decomposed into one
fixed-width slice for each bit position. On the other hand,
in blocked signature files, a sequence of text document is
divided into several blocks containing the fixed number of
distinct words and for each block, a bit mask of the fixed-
width is assigned. Since these index schemes are designed
for a containment query, they are not applicable for reuse
detection problem in which the goal is to discover matches
with high word-overlaps. Thus, in this paper, we propose
gSign algorithm which exploits an efficient index scheme to
support word overlap identification.

2.1.2 Mapping Bounds on False Positives to Bounds
on Bit Differences

Since signatures are randomized in nature, a signature-
based index structure cannot always achieve 100% precision
and recall. Thus, the gSign indexing scheme presented in
this section aims to maximize the recall rate, prec, given a
user supplied upper bound, ps,, on the rate of false pos-
itives. In this subsection, we discuss how to compute an
upper bound on bit differences given an upper bound on
false positive rate.

Let us be given a sentence, s1, composed of n words, and
a corresponding signature, Sigs,, of m-bits, where exactly
I-bits are randomly set (I < m). As described earlier, the
sentence signature is formed by bitwise-or of the signatures
of the words appearing in the sentence. Thus, the probabil-
ity of a given bit being set to 1 in this sentence signature
can be computed as follows [39]:

1 nl -
1-(1 m) ~l—e ™.

Let us now consider a second sentence, ss which contains
the same n words plus k additional words'. Since the set
of words of s; is a subset of the set of words of s2, the bits
set for the signature, Sigs,, of the sentence sz will also be
a superset of the bits set to 1 in Sigs,. Some of the bits
that are 0 in Sigs, will, however, switch to 1 due to the
additional k words. The probability of a given bit switching
from 0 to 1 due to the addition of these k new words can be
computed as follows:

)n

~ e mx(1

Pbitswitch(m, l, n, k) = C(]_ — l l _ i
m

!Deletion of words is handled similarly. In general, unique
words can be modeled as combinations of “addition” and
“deletion” operations.

84

Track: Data Mining / Session: Text Mining

reuseAsentences

i
\ Search sentence-index and
create a candidate hash table

@ Perform hash join to
compute reuse score

Candidate-
selection

query candidate
K1 F_K1 K1 F_K1
I — I — (Doc;, Sen;)
K2 [F_K2 K2 [Frk2 ./ "\ | .
Kn [F_Kn Kj [F_Kj
T
]
1
1
! @Update sentence-index
!
Post-processing 1
1
1
____________ b m e e e e
!
!
1
1
1

h Create a query hash table and
: a sentence signature

1 Map a signature

0 @ int i
H . into a query pommw
|_1| Update

signature-index

sentence queue

sentence signature
stream of

new entries

Figure 4: An overview of the gSign reuse detection
with the use of sentence signatures.

Given this, we can formulate the probability, Pezact bit diff,
that there will be exactly t bit differences between signatures
Sigs, and Sigs, due to these k words as follows:

Pezact,bit,diff (m, l7 n, k, t) =

m m—
(') Pritswiten(m, 1, n, k)t(l — Poitswiten(m, 1, n, k)) L
Similarly, we can compute the probability, Prasz_bit_dis s, that
there will be at most d bit differences between signatures
Sigs, and Sigs, due to these k words as

Pmaa;,bit,diff(ma ly n, k:7 d) = Z Pe:cact,bit,diff(my l7 n, k7 t)
0<t<d

Let us assume that the user allows up to k-words flexibility
in the detection of word-overlaps between sentences. Under
this condition, s; and sz should be returned as a matching
pair by the index structure with high probability. In other
words, under k-words flexibility, for the given values of m,
[, n and k, and an acceptable false hit rate, py,, we need to
pick the largest bit-difference value, d, such that

Pmaac,bit,diff(m7 l,n, k =+ 1, d) S Pfp-

In other words, for any sentence with more than k£ addi-
tional words, the probability of being returned within d bit
differences will be at most py;.

Note that Prae it difs is small when ef% is close to ei-
ther 0 or 1 (i.e., when [is close to 0 or m is close to infinity).
Of course, arbitrarily increasing the number of bits used by
the signature (that is, m) would negatively effect the cost of
range searches on the index structure (this is referred to as
the dimensionality curse in multi-dimensional indexes [11,
16, 27]). Thus, instead of arbitrarily increasing m, qSign
picks the number, [, of bits set to 1 in the signature low. In
particular, given a dictionary of w words, [is selected as the
smallest value such that all the words in the dictionary can

be uniquely represented; i.e., (T) > w.

WWW 2009 MADRID!

Figure 5: Pseudo-code of the gqSign Algorithm

Input : a query sentence, s,, and a distance, v/d
Output : a set of identifies of document and sentence, O,

Step 1 : Candidate-selection

1.1. Create a m-bits query signature, Sigs,, and
a hash table, H;, for a sq.

1.2. Map a Sigs, into a point ps, in a m-dimension space
1.3. Find points from ps, that lie within a distance, Vd, and
add (Doc;, Sen;) of results into candidate queue, Cs.

1.4. Insert a point ps, into signature-indez.

Step 2 : Post-processing
(Reuse Detection with Candidate Sentence)

If Cs is empty, return null
or all (Doc;, Sen;) in Cs do
Search a sentence-index using key (Doc;, Sen;),
extract a word and frequency list, s., and
create a hash table, H,,.
Perform a hash join between Hs, and Hs,,
and compute a similarity score by using
word-overlap measure.
If score is greater than a threshold,
store (Doc;, Sen;) into Os.
2.6. Insert a query sentence, sq into sentence-index.
2.7. Return Os.

2.1.
2.2.
2.3.
2.4.

2.5.

In Section 3.2, we will evaluate the impact of m, n and d
on the recall as well as reuse detection time for blogs and
news articles.

2.1.3 qSign: Supporting Range Searches based on
Signature Bit Difference

The sentence signature can be mapped into a point in a
high dimensional space. Let us be given a sentence s; and a
corresponding signature of m-bits, Sigs; = vs; 1 Vs; 5-+-Vsy
where the value of v, ; is a zero or one. This signature can
be thought as a point, ps; = (Vs; 1, Usy sy Vsy), iDL M-
dimensional space. Then, a Euclidean distance between two
points, ps, and ps, whose corresponding signatures are ¢ bit
different with each other, can be computed as a follow

m

Z (v51,i - v52,i)2 = \/i

i=1

DiSt(p\Sl 7p52) =

Thus, given a d-bits upperbound on the difference be-
tween the query signature and the sentence signatures in the
database, the gSign algorithm identifies candidate sentences
as those that lie within a Euclidean distance \/E Figure 4
provides an overview of the proposed signature-based reuse
detection process, based on the above signature and query
range identification schemes:

1. Given an incoming stream of blog and news entries, the
candidate-selection step extracts sentences from the in-
coming entries and inserts them into a sentence queue.

2. For each sentence in the sentence queue,

(a) First a query word hash table and a sentence sig-
nature are created.

(b) The sentence signature is mapped into a query
point in a high dimensional space.

85

Track: Data Mining / Session: Text Mining

Table 1: Data sets and reuse detection queries

name #docs. #sent. W(ir\;esr;biit.
data Google_1000 1,000 29,292 9.45

Google_10000 10,000 291,331 9.24
query | Google_query 30 1020 9.98
data Blog_100000 100,000 | 5,226,708 6.73
query Blog_query 20 950 6.55

(c) Candidate sentences are identified (and inserted
into a candidate queue) by searching points that
lie within a search range. Here, the appropriate
search distance, v/d, is computed based on the

equation described in Section 2.1.2.
The new entry is then inserted into the signature-

indez to support future lookups.

(d)

. For each candidate sentence in the candidate queue, the
post-processing step identifies a word-and-frequency list
using a sentence-index. These are inserted into a can-
didate hash table for quick lookup.

The query keywords and the keywords in the candi-
date hash table are matched using a symmetric, non-
blocking hash join.

5. The sentences in the query are inserted into a sentence-
index to support future lookups.

Figure 5 presents the pseudo-code for the qSign algorithm.
Given a database of sentences (signature-index) and a query
sentence, ¢, in the candidate-selection step, a set (Cs) of
candidate sentences is identified by searching points that lie
within a BEuclidean distance, v/d from the point, Dsg, COT-
responding to the signature of the query sentence (Step 1.1
- 1.3). Then, a point, p,,, is inserted into signature-index
(Step 1.4). If Cs is not empty, for each candidate sentence
in Cs, we extract a word and frequency list indexed by the
sentence-index and made a hash table, H,, (Step 2.3). Both
Hs, and H,, are used for performing a hash join between
the query and the candidate sentences when computing sim-
ilarity scores (Step 2.4). Then, if the reuse score is greater
than the given threshold value, the identifier of the doc-
ument and the corresponding sentence is added to the list,
Os, of matches (Step 2.5). Finally, a sentence, s, is inserted
into sentence-index (Step 2.6).

Note that reuse detection is a incremental process in that
whenever a new blog entry is provided, it is compared to
entries in the data collection to find reuses. Furthermore,
gSign algorithm incrementally updates sentence-index and
signature-index data structures to compute reuse score (Steps
1.4 and 2.6). Thus, gSign algorithm enables incremental
computation of reuse score as new blog entries are entered
to system and avoids frequent rebuilding of index structures.

3. EXPERIMENTS

In this section, we experimentally evaluate the effective-
ness and efficiency of the signature-based reuse detection
scheme (qSign) discussed in Section 2. We study the impact
of the signature length (m) and the search range (v/d) on
the reuse detection time and we show that indexing-based fil-
tering for reuse detection enables scalable operation of reuse
detection schemes for large collections of blog and news en-
tries. Most importantly, we show that signature-based reuse
detection does not cause a significant reduction in recall or
precision. First we describe the experimental setup and then
we will discuss the results.

WWW 2009 MADRID!

Track: Data Mining / Session: Text Mining

Table 2: Detailed impact of filtering on recall: d represents d bits difference with the query signature (and

corresponds the Eucledian query range of v/d).

threshold(f) | #reuse 16 bit signatures 32-bit signature
level sen. d=0 d=1 d=2 d=3 d=4 d=5 d=0 d=1 d=2 d=3 d=4 d=5
09<6<1 1158 0.957 | 0.988 | 0.990 0.999 0.999 1 0.950 | 0.969 | 0.988 | 0.989 | 0.992 | 0.992
0.8<6<0.9 534 0.768 | 0.841 | 0.919 0.996 0.998 1 0.678 | 0.783 | 0.846 | 0.888 | 0.905 [0.942
0.7<6<0.8 112 0.107 | 0.366 | 0.750 0.920 0.991 1 0.063 | 0.170 | 0.411 | 0.509 | 0.732 [0.875
0.6<6<0.7 86 0 0.091 [0.443 0.693 0.920 0.989 0 0.023 | 0.058 [0.170 | 0.372 | 0.500
0.5<6<0.6 94 0 0.096 [0.319 0.545 0.819 0.936 0 0.021 [0.032 | 0.117 | 0.255 | 0.383
total 1984 0.772 | 0.832 | 0.903 0.960 0.987 0.997 0.740 | 0.788 | 0.831 | 0.854 | 0.892 [0.922
#matches per sen. 1.7 5.0 28.7 134.7 459.2 1199.7 1.4 1.5 1.6 1.7 2.1 3.7
(a) Google_1000
threshold(6) [#reuse || 16 bit signatures I 32-bit signature |
level sen. || d=0 [d=1 [d=2] d=3 | d=4 | d=5 || d=0 [d=1 [d=2 | d=3 [d=4 [d=5 |
09<6<1 2286 0.955 | 0.982 | 0.987 0.999 0.999 1 0.922 | 0.948 | 0.982 | 0.986 | 0.990 | 0.992
0.8<60<0.9 993 0.783 [0.878 | 0.949 0.996 0.998 1 0.681 | 0.807 | 0.872 | 0.913 | 0.940 | 0.965
0.7 <6 <0.8 281 0.139 [0.523 | 0.758 0.940 0.996 1 0.057 | 0.281 | 0.484 | 0.616 | 0.762 | 0.883
0.6<6<0.7 189 0 0.143 | 0.423 0.640 0.894 0.905 0 0.011 | 0.037 [0.196 | 0.344 | 0.466
05<6<0.6 164 0 0.122 [0.348 0.512 0.811 0.835 0 0.018 | 0.024 [0.128 | 0.220 | 0.390
total 3913 0.767 | 0.846 | 0.907 0.957 0.986 0.989 0.716 | 0.780 | 0.833 | 0.867 | 0.897 | 0.926
[#matches por sen. || 5.1 | 370 | 267.8 | 1277.6 | 4398.2 | 116315]| 2.7 | 29 | 32 | 39 [72 | 219 |

(b) Google_10000

Precision vs. Recall

Precision vs. Recall

Precision vs. Recall

Precision
Precision

Precision

075 08

Recall

085

Recall

09 095 1

Recall

—m-32-bit signatures |

| ——16-bit signatures

—+—16-bit signatures

~#-32-bit signatures ‘

—+—16-bits signature -m-32-bits signature

(a) Google_1000
Figure 6: Precision/Recall graphs

3.1 Experimental Setup

We experimented with two different signature lengths (m):
32 bits and 16 bits. For 32-bit signatures, two bits were set in
the mask for each word using hash function, MD5 [6] (I = 2).
To maintain a similar m/I ratio, for 16-bit signatures, only
one bit was set (I = 1). Note that with 16-bit signatures
and [= 1, there is significant overlap in the keyword sig-
natures: there are only 16 unique keyword signatures. For
disk-based multi-dimensional indexing of the signatures, we
used a Hybrid-tree [16]. For reuse detection, we used word
overlap measure and set the word-overlap threshold, 6, to
0.5. We ran all experiments on a Pentium 1.60GHz Linux
machine with 512M of RAM. In this section, we report two
kinds of experiments: non-incremental and incremental up-
date experiments. In non-incremental setting, the data col-
lection is pre-processed and indexed off-line and is not up-
dated in the course of reuse detection. On the other hand,
in incremental update experiments, whenever a query blog
entry is provided, it is compared to entries in the data col-
lection to find reuses, and then used to incrementally update
the data collection to support further lookups.

3.2 Non-incremental Update Experiments

For non-incremental update experiments, we used three
data sets: Google data (blogs [2] and news [3]) were crawled
from April 10th to April 18th, 2007 from diverse categories,
such as politics, business, science and sport. We randomly
selected 1000 and 10000 news articles and blog entries from

(b) Google_10000

86

(c) Blog 100000

shows that 32-bit (with [= 2) outperforms 16-bit (with [= 1)

the crawled data. We also selected 100000 entries from the
Blog data from the benchmark collection distributed in [7].
As reuse detection queries, we randomly selected 30 entries
from the Google data set and 20 entries from data dis-
tributed in [7]. The duplicates we are reporting are the
sentence duplicates between query documents and data set.
Table 1 summarizes the number of sentences and keywords
for the data sets and queries for reuse detection used in our
experiments.

The experiments in this subsection are divided into two
parts. First, we measure the precision and recall of the
proposed method to quantify the effectiveness of signature-
based filtering. Then, we evaluate the scalability of the ap-
proach.

3.2.1 Precision and Recall

Table 2 illustrates the impact of signature-based filtering
in reuse detection. Figures 6 summarizes the precision ver-
sus recall behavior for the results presented in Table 2. The
ground truth (#reuse sen. column of Table 2) for these ex-
periments is obtained by a naive approach which compares
query sentences with all sentences in the database. In this
table, d represents d bits difference with the query signa-
ture (and corresponds the Eucledian query range of \/3)
The table includes d values upto 5 since this value is suffi-
cient for high recall. For this experiment, various levels of
word-overlap threshold () are used for reuse detection. The
observations based on Table 2 can be summarized as follows:

WWW 2009 MADRID!

Predicted vs. Observed Recall (Google _1000)

—~ ¢ Observed (0.8-09)
~—#— Predicted (0.8)
— % Observed (0.7-0.8)

—o— Predicted (0.7)
— + Observed (0.6-0.7)
Predicted (0.6)

Observed (0.5 - 0.6)

Recall

-

d=1 d=2 d=3 d=4 d=5

Bit difference (d)

(a) 16 bit signatures

Figure 7: Predicted values using Peyactpitdifs lie between observed recall values.

Track: Data Mining / Session: Text Mining

Predicted vs. Observed Recall (Google_1000)

— - Observed (0.8-0.9)

—#— Predicted (0.8)

— % Observed (0.7-0.8)

~—o— Predicted (0.7)

= 4= Observed (0.6-0.7)
Predicted (0.6)

— - Observed (0.5-0.6)

Recall
°
X

v P i
,/// o
02 -
Z
&
01 =X

==

o x.s::)(/

d=1 d=2 d=3 d=4 d=5

Bit difference (d)

(b) 32 bit signatures

For example, when the

word-overlap threshold is set to 0.7, predicted values lie between observed recall values of 0.6 < 8 < 0.7 and

0.7< 60 <0.8.

Relative run time vs. Recall

o7 075 08 085 09 095

/. —e—16-bit signatures
0.01

—=—32-bitsignatures
0001

00001

Inverted-index

Relative run time

Recall

(a) Google_10000

Relative run time vs. Recall

o7 075 08 085 09 095

01 ,./

—e— 16-bit signatures

—=— 32-bit signatures

Inverted-index

Relative run time

0.0001
Recall

(b) Blog_100000

Figure 8: Comparison of run times for relative to naive full scan

e The first thing to note in this table is that there exist a
great deal of reuse in the high word-overlap threshold
level (0.9 < 6 < 1). This is because in many cases
news articles and blog entries contain a large number
of exact quotations.

e This table also lists the number of candidate sentences

found matching the query sentence (#matches per sen.

row). On a 32-bit signature (with ! = 2), the number
of candidate matches shows a relatively stable growth
as the search radius increases. However, for 16-bit sig-
natures (with [= 1), the number of candidate matches
grows almost exponentially as the search radius in-
creases. This is mainly due to the negative effect of
word signature overlaps (due to the existence of only
a small number of unique word signatures).

Precision versus recall plots in Figure 6 verify that 32-bit
signatures (with [=2) achieve better precision than 16-bit
signatures (with [=1). These results also indicate that the
performance gap between 16- and 32-bit signatures sharply
increases with increasing co-indexed documents. This is be-
cause on the 32-bit scheme, the number of candidate matches
grows stably as the number of co-indexed documents in-
creases, while on 16-bit scheme, the number of candidate
matches shows an exponential growth with increasing co-
indexed documents. Furthermore, Figure 6 shows that using
32-bit signatures it is possible to achieve a high reuse detec-
tion rate (> 75%) with almost perfect precision. The recall
rate can be further improved by relaxing the radius of the
query range, but this has a drastic impact on the precision,
thus may require costly post-processing to eliminate false
matches. In Section 3.2.2, we study the query processing
time for reuse detection in more detail.

87

Predicted vs. Observed Recall: Before we proceed
to the experiments for reuse detection performance, we fur-
ther verify that the Pegact vit_aifs in Section 2.1.2 can indeed
be used to predict the search radius. Figure 7 shows the
Pegact bit_difr based recall prediction when the word-overlap
threshold (0) is set to 0.7, 0.8, or 0.9 for 32-bit signatures
(m = 32 and | = 2) as well as 16-bit signatures (m = 16
and [= 1). The figure also includes the observed values
(Table 2(a)) for the cases of 0.5 < 6 < 0.6, 0.6 < § < 0.7,
0.7 < 0 <0.8, and 0.8 < 6 <0.9. As before, d varies from 1
to 5. In Figure 7, the solid lines are predicted values based
on the equation presented in Section 2.1.2 each for a fixed
threshold, 6. The dashed lines correspond to average recall
for different ranges of 6 values. We expect that each pair
of two consecutive dashed lines will behave as upper- and
lower-bounds for a solid line. As expected, the curves corre-
sponding to the observations are lower- and upper-bounds of
the predicted curve. For example, the lines of 0.6 < 0 < 0.7
and 0.7 < 0 < 0.8 are respectively lower- and upper-bounds
of the predicted recall when the word-overlap threshold (6)
is set to 0.7. The shapes of the observed curves match the
shape of the predicted curve well.

3.2.2 Reuse Detection Performance

In this section, we test the scalability of qSign on real
data sets. In these experiments, we used data sets of 10,000
and 100,000 entries, as in most systems, the blog entries are
pre-clustered based on recency or based on high-level topic
analysis. We estimate that 100,000 blog entries is a reason-
able collection size for reuse-detection. Note, however, that
there may be multiple such clusters, rendering in memory-
based solutions to reuse-detection highly impractical.

WWW 2009 MADRID!

Candidate-selection time vs. Recall

Post-processing time vs. Recall

Track: Data Mining / Session: Text Mining

Total time vs. Recall

Time (msec)
Time (msec)
g8

\\
Time (msec)
|
~—_

07 075 08 085 09 095 07 075

Recall

150 ;

w {

50 s0 "v.,") 50 j
J——l—"r'-.._ o e == = o m

Recall Recall

‘ —e— 16-bitsignatures —B—32-bit signatures Inverted-index ‘

[—e—16bitsignatures —s—32-bit signatures

Inverted-index ‘ ‘ —e—16-bitsignatures —a—32-bit signatures Inverted-index ‘

(a) Candidate-selection of Google_10000

Candidate-selection time vs. Recall

6000 6000

5000 5000

&

(b) Post-processing time of Google_10000

Post-processing time vs. Recall

(c) Total time of Google_10000

Total time vs. Recall

6000

5000 —

4000

Time (msec)
Time (msec)
E

1000 1000

Recall

3000

Time (msec)

2000

1000

0 L
07 075 08 085 09 095

Recall Recall

‘ —e—16-bit signatures —8—32-bit signatures Inverted-index ‘

‘ —e—16-bitsignatures —B— 32-bit signatures

Inverted-index ‘ ‘ —e—16-bitsignatures —a—32-bit signatures Inverted-index |

(d) Candidate-selection of Blog_100000

(e) Post-processing time of Blog_100000

(f) Total time of Blog 100000

Figure 9: Comparison of (a,d) candidate-selection times, (b,e) post-processing times, and (c,f) total times

for 10,000 and 100,000 entries

In this subsection, we compare our gSign algorithm with
an inverted-index based scheme used in duplicate detection.
As stated in Section 1.1, [10] is an inverted-index based algo-
rithm and finds all pairs of documents in a collection, where
similarity score is above a given threshold. For our evalua-
tions, we adapted the underlying inverted-index based tech-
nique in [10] into sentence-based reuse detection problem:

1. Instead of documents, the inverted list indexes the in-
dividual sentences in the documents.

2. The original algorithm goes through the entire data
set to identify all matching pairs. In this set of experi-
ments, however, (while the underlying index structures
and matching algorithm are the same as the original
one), we only need to iterate over 30 entries for Google
data and 20 entries for the Blog data, and match them
to the complete data set.

3. Candidate sentences are obtained by varying similarity
threshold and post-processing needs to identify actual
reuses among candidate sentences.

Note that in experiments, we varied similarity threshold
in [10] such that the recall ranges obtained by the inverted-
index based technique are similar to those by qSign.

Figure 8 plot the index-based reuse detection time as a
ratio of a naive reuse detection time approach (which would
scan the entire database for detecting reuse):

run time of filtering approach

the relative run time = - -
run time of naive approach
The relative run time being less than 1 means that the
filtering-based approach outperforms the naive method. Note
that the run time for reuse detection can be split into two
individual steps of the algorithms in Subsection 2.1.3:

e candidate-selection which includes the time to create
the signature for each sentence, to perform range search
on a multi-dimensional index to generate a set of can-
didate reuse matches, and to incrementally update a
multi-dimensional index, and

e post-processing step which includes the execution times
to perform a hash-join based post-processing to com-
pute a reuse score and to update sentence-inder incre-
mentally.

Figure 9 shows the way that the execution time is split
between candidate-selection and post-processing step. Note
that data in this section are obtained by the disk-based im-
plementation of both gSign and the underlying inverted-
index based technique in [10]. The observations from Fig-
ure 8 and 9 can be summarized as follows:

e Depending on the permissible recall rate, qSign sig-
nificantly improves the reuse detection performance.
The processing time gains against a naive solution can
be 100X to 1000X, with recall rates of upto 70% (Fig-
ure 8).

e Furthermore, at all recall rates, qSign outperforms the
inverted-index based scheme (Figure 8 and 9 (c,f)). As
can be seen in Figure 9 (a,d), gSign significantly out-
performs the inverted-index based scheme in candidate-
selection step. This is because in the candidate-selection,
gSign leverages an efficient index scheme, based on
range searches in a multi-dimensional space, for prun-
ing sentences whose similarity scores are less than a
given threshold with high probability. On the other
hand, in post-processing step, the inverted-index based
algorithm shows a slightly better performance than
gSign (Figure 9 (b,e)). The major performance gain of
gSign algorithm is achieved by the efficient scheme for

WWW 2009 MADRID!

Recall vs. Time
1000

100

Time (msec)
5

Recall

‘ ——Google_1000 ~#-Google_10000 Blog_100000 |

Figure 10: Recall versus run time (32-bit signatures)

identifying candidate sentences using the proposed in-
dex structure. Especially, on a 32-bit signature, gSign
significantly outperforms the inverted-index based al-
gorithm in candidate-selection, while gSign and the
inverted-index based algorithm show a similar perfor-
mance in post-processing.

e When lower recall rates are acceptable, the 16-bit signature-

based filtering can be slightly faster than 32-bits. Note
that when the data set is small and a recall rate is
low, the number of candidate matches between 16- and
32-bit signatures is almost similar to each other (as
shown in Table 2), which causes candidate-selection
step to be a major contribution on the performance
gap between 16- and 32-bit signature-based filtering.
On the other hand, when high recall is required, the
32-bit signature-based filtering outperforms the 16-bit
scheme. The reason for this is that the number of can-
didate matches that need to be post-processed on the
16-bit scheme grows almost exponentially (as shown in
Table 2), which results in significant amounts of false
matches to be eliminated during post-processing.

Figure 10 plots the average reuse detection time per query
sentence. As can be shown in this figure, given a query
sentence, it takes less than 1 second to detect reuse sentences
in 100,000 co-indexed documents by using gqSign.

3.3 Incremental Update Experiments

For incremental update experiments, we collected 1 mil-
lion sentences from the Blog data [7], treated the data as a
sentence stream, and found reuses for each sentence in this
stream.

Effect of candidate-selection and post-processing on
execution times: The next set of experiments is about
the effect of candidate-selection and post-processing on exe-
cution times. Figure 11 shows how the execution times for
reuse detection increase as the number of sentences inserted
into the database increases. Notice that Figure 11 plots the
case where the bit difference between signatures, d, is set to
1 and 2 (and corresponds the search range of 1 and v/2) and
16-bit signatures and 32-bit signatures are used.

As shown in figure, the execution times increase with both
the number of sentences and the search radius used in per-
forming range search on a multi-dimensional index. For a
given search radius is used, the 32-bit scheme outperforms
16-bit scheme. We also plot the trend of each curve in Fig-
ure 11 and can see that the execution times are quadratic in
the number of sentences that are being compared.

89

Track: Data Mining / Session: Text Mining

12000
y = 1E-08x2 - 0.004x +570.9

10000

8000

6000

Time (sec)

¥ =3E-09x +0.001x - 122.4
4000

2000

= 2E-10x2 +0.000x - 21.55

ol [eannasesss i t

0 200,000 400,000 600,000 800,000 1,000,000

New sentences
—a— 32-bit signatures, d=1
—8— 16-bit signatures, d=1
rrrrr Poly. (32-bit signatures, d=1)
rrrrr Poly. (16-bit signatures, d=1)

32-bit signatures, d=2
—>—16-bit signatures, d=2
rrrrr Poly. (32-bit signatures, d=2)
rrrrr Poly. (16-bit signatures, d=2)

Figure 11: The performance of reuse detection: the

execution times of qSign are quadratic.

Figure 12 shows the way that the execution time is split
between candidate-selection and post-processing steps. The
observations based on Figure 12 can be summarized as fol-
lows:

e In the case of the 16-bit scheme, when the number
of sentences to be inserted increases, the major con-
tributor to the corresponding increase in the execution
times is the post-processing step. This is expected as
for 16-bit signatures, the number of false matches that
need to be eliminated during post-processing grows
quickly as the number of sentences increases.

e For the 32-bit scheme, we see that while the execution
time of post-processing increases, the major contribu-
tor to the increase in overall execution times is due to
candidate-selection step. This is because a large search
distance greatly effects the cost of range searches using
the multi-dimensional index structures.

Performance evaluation of incremental processing:
gSign is incremental in that whenever a new blog entry is
available, it is compared to entries in the collection to find
reuses and then is used to update the collection. In this ex-
periment, we vary the number of sentences originally stored
in database from 500K to 800K, while the number of new
sentences is fixed as 100K. Figure 13 plots the case where the
bit difference between signatures, d, is set to 1. For com-
parison purposes, we also implemented a non-incremental
reuse detection scheme (i.e., full re-computation). In the
non-incremental reuse detection case, when a collection of
new sentences is generated, we fully re-process all sentences
in databases and queries to detect reuses, while in the in-
cremental reuse detection case, new sentences are processed
to identify reuses and to update the existing database. As
shown in this figure, the time gain of the incremental pro-
cessing is up to 5x and 7x for 16-bit and 32-bit scheme re-
spectively. Furthermore, the performance gaps between in-
cremental and full re-computation reuse detection schemes
get larger as the number of sentences already in the databases
increases.

4. CONCLUSION AND FUTURE WORK

In this paper, we observed that frequent content reuse is
very common in blogs and news entries outlets tracking the
same real-world event. In order to enable scalable operation
of reuse-detection we presented an efficient and incremen-
tal filtering-based qSign algorithm. We also investigated
an effective scheme to compute the appropriate search dis-
tance given an acceptable recall rate. Our experiments show

WWW 2009 MADRID!

New sentences

200,000 400,000 600,000 800,000 1,000,000

3000

2500

2000

1500

Time(sec)

1000

16bits 32bits 16bits 32bits 16-bits 32-bits 16bits 32-bits 16-bits 32bits

ol BN N e e | e

d=1

Post-processing = Candidate-selection

(a) Bit difference (d = 1)

Figure 12:

Incremental computation vs. full recomputation
(100K new sentences)

A
1000 .
p
1600 <
-
.
a0
—
T 1200
L
i =
Ewl - * _
k-- —e------—-3%
wb s S—
400 -
00
L 3 o <
. !

500000 600000 700000

Sentences originally in the DB

800000
—o Full re-computation (m=32, |=2,d=1) —#—incremental (m=32, |2, d=1)

— A Full re-computation (m=16, |=1, d=1) —&—incremental (m=16, I=1, d=1)

Figure 13: The performance comparison between
incremental processing and full re-computation for
reuse detection.

that qSign algorithm significantly improves the reuse detec-
tion speed efficiency without causing significant reductions
in recall and precision. Furthermore, we verified that the
Peractvit_difs based recall prediction can be effectively used
to predict the search radius through experiments. Future
work will include investigation of reuse detection techniques
for even larger data sets.

5. REFERENCES

[1] David Sifry’s Blog. http://www.sifry.com/alerts/.

[2] Google Blog Search. http://blogsearch.google.com/blogsearch.

[3] Google News. http://news.google.com.

[4] Google Book Search. http://books.google.com/.

[5] Yahoo News. http://news.yahoo.com.

[6] The MD5 Message-Digest Algorithm.

http://tools.ietf.org/html/rfc1321.

[7] WWW’06 Workshop on the Weblogging Ecosystem:

Aggregation, Analysis and Dynamics. 2006.

[8] E. Adar and L.A. Adamic. Tracking Information Epidemics in
Blogspace. In Proceedings of the 2005 IEEE/WIC/ACM
International Conference on Web Intelligence, 2005.

A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, 2006.

R.J. Bayardo, Y. Ma, and R. Srikant. Scaling Up All Pairs
Similarity Search. In WWW, 2007.

S. Berchtold, D.A. Keim, and H. Kriegei. The X-tree: An
Index Structure for High-Dimensional Data. In VLDB, 1996.
Y. Bernstein and J. Zobel. A Scalable System for Identifying
Co-derivative Documents. In Proceedings of String Processing
and Information Retrieval Symp, 2004.

R. Blood. The Weblog Handbook: Practical Advice on
Creating and Maintaining Your Blog. Perseus Books Group,
2002.

A.Z. Broder. On the resemblance and containment of
documents. In Proceedings of Compression and Complexity of
Sequences, 1997.

S. Brin, J. Davis, and H. Garcia-Molina. Copy detection
mechanisms for digital documents. In SIGMOD, 1995.

K. Chakrabarti, and S. Mehrotra. The Hybrid Tree: An Index
Structure for High Dimensional Feature Spaces. In ICDE, 1999.

9]
(10]
(11]

(12]

(13]

[14]

(15]

[16]

90

Time(sec)

12000

10000

8
8

g

&
g

g

Track: Data Mining / Session: Text Mining

New sentences

200,000 400,000 600,000 800,000 1,000,000

°

16bits 32bits 16bits 32bits 16bits 32bits 16-bits 32bits 16-bits 32-bits
d=2

Post-processing = Candidate-selection

(17]

18]

(19]

[20]

(21]

(22]

(23]

(24]
(25]

[26]

(27]

(28]

[29]
30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

(b) Bit difference (d = 2)

The way that the execution time is split between candidate-selection and post-processing steps.

S. Chaudhuri, V. Ganti, and R. Kaushik. A Primitive Operator
for Similarity Joins in Data Cleaning. In ICDE, 2006.

X. Chen, B. Francia, M. Li, and B. Mckinnon. Shared
Information and Program Plagiarism Detection. IEEE
Transactions on Information Theory, 50 (7), 1545-1551, 2004.
Y. Chi, S. Zhu, X. Song, J. Tatemura, and B.L. Tseng.
Structural and temporal analysis of the blogosphere through
community factorization. In SIGKDD, 2007.

R. Cilibrasi, and P. Vitanyi. Clustering by compression. IEEE
Transactions on Information Theory, 51(4), 1523-1545, 2005.
A. Chowdhury, O. Frieder , D. Grossman, M.C. McCabe.
Collection statistics for fast duplicate document detection.
ACM TOIS, v.20 n.2, p.171-191, 2002.

A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High
Dimensions via Hashing. In VLDB, 1999.

L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N.Koudas,

S. Muthukrishnan, and D. Srivastava Approximate String Joins
in a Database (Almost) for Free. In VLDB, 2001.

N. Heintze. Scalable document fingerprinting. In USENIX
Workshop on Electronic Commerce, 1996.

T. Hofmann. Probabilistic latent semantic analysis. In
Proceedings of Uncertainty in Artificial Intelligence, 1999.

P. Indyk, R. Motwani, P. Raghavan and S. Vempala
Locality-preserving hashing in multidimensional spaces. In
STOC, 1997.

N. Katayama and S. Satoh. The SR-tree: an index structure for
high-dimensional nearest neighbor queries. In SIGMOD, 1997.
J.W. Kim, K.S. Candan, and J.Tatemura. CDIP:
Collection-Driven, yet Individuality-Preserving Automated
Blog Tagging. In ICSC, 2007.

J.W. Kim, K.S. Candan, and J.Tatemura. Organization and
Tagging of Blog Entries based on Content Reuse. submitted.
O. Kolak, and B.N. Schilit. Generating links by mining
quotations. In HT, 2008.

U. Manber. Finding Similar Files in a Large File System. In
Proceedings of the USENIX Winter 1994 Technical
Conference, 1994.

G.S. Manku, A. Jain and A.D.Sarma. Detecting
NearDuplicates for Web Crawling. In WWW, 2007.

D. Metzler, Y. Bernstein, W.B. Croft, A. Moffat, and J. Zobel.
Similarity Measures for Tracking Information Flow. In CIKM,
2005.

S. Schleimer, D.S. Wilkerson, and A. Aiken. Winnowing: Local
Algorithms for Document Fingerprinting. In SIGMOD, 2003.
S. Sarawagi, and A. Kirpa. Efficient set joins on similarity
predicates. In SIGMOD, 2004.

N. Shivakumar and H. Garcia-Molina. SCAM: A Copy
Detection Mechanism for Digital Documents. Second Annual
Conference on the Theory and Practice of Digital Libraries,
1995.

N. Shrivakumar and H. Garcia-Molina Finding near-replicas of
documents on the Web. In International Workshop on the
World Wide Web and Databases, 1998.

H. Yang, and J. Callan Near-duplicate detection by
instance-level constrained clustering. In SIGIR, 2006.

J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files
versus signature files for text indexing. ACM Transactions on
Database Systems(TODS), 23(4), 453-490, Dec. 1998.

C. Xiao, W. Wang, X. Lin, and J.X. Yu. Efficient Similarity
Joins for Near Duplicate Detection. In WW W, 2008.

