
Co-Browsing Dynamic Web Pages

Dietwig Lowet
Philips Research Laboratories

High Tech Campus 34
Eindhoven, The Netherlands

0031-40-2749543

dietwig.lowet@philips.com

 Daniel Goergen

Philips Research Laboratories
High Tech Campus 34

Eindhoven, The Netherlands
0031-40-2749537

daniel.goergen@philips.com

ABSTRACT

Collaborative browsing, or co-browsing, is the co-navigation of the

web with other people at-a-distance, supported by software that

takes care of synchronizing the browsers. Current state-of-the-art

solutions are able to do co-browsing of “static web pages”, and do

not support the synchronization of JavaScript interactions. However,

currently many web pages use JavaScript and Ajax techniques to

create highly dynamic and interactive web applications. In this

paper, we describe two approaches for co-browsing that both

support the synchronization of the JavaScript and Ajax interactions

of dynamic web pages. One approach is based on synchronizing the

output of the JavaScript engine by sending over the changes made

on the DOM tree. The other approach is based on synchronizing the

input of the JavaScript engine by synchronizing UI events and

incoming data. Since the latter solution offers a better user

experience and is more scalable, it is elaborated in more detail. An

important aspect of both approaches is that they operate at the DOM

level. Therefore, the client-side can be implemented in JavaScript

and no browser extensions are required. To the best of the authors’

knowledge this is the first DOM-level co-browsing solution that also

enables co-browsing of the dynamic interaction parts of web pages.

The presented co-browsing solution has been implemented in a

research demonstrator which allows users to do co-browsing of

web-applications on browser-based networked televisions.

Categories and Subject Descriptors

H.5.3 [Information interfaces and presentation]: Group and

Organization Interfaces – Computer supported cooperative work.

General Terms

Algorithms

Keywords

Co-browsing, shared browsing, collaborative computing, Web4CE,

collaboration

1. INTRODUCTION
The browser is turning into a ubiquitous platform for providing

users access to data, services and applications. The browser is

moving into the direction of a thin client computing platform in the

PC domain and also gained importance in the mobile domain and

will be present on networked TVs (based e.g. on Web4CE [1]) in

the near future. Conjoined with the trend of the increasing amount

of web-based multimedia services, a browser-based IPTV platform

[9] is the logical next step.

The solution presented in this paper has been developed for a

browser-based TV platform based onWeb4CE, but applies equally

well for PC and mobile browsers. We see the browser-based TV

platform not only as a possibility to bring well-established internet

services and new TV related services to the user, but also as an

opportunity to enable new types of services and user experiences.

One aspect here is to enable the user to share content and

experiences with their family and friends at distant locations from

the comfort of their couch. Examples of experience sharing are

watching pictures together (as depicted in Figure 1), watching

online video clips together, doing online shopping together or

playing games together.

Figure 1 Two couples watching pictures together

Bringing synchronous experience sharing to the user can be done in

two ways. A first way is to develop new multi-user applications

developed with multiple users in mind. But this would only be done

for a small amount of web applications and will not include the vast

amount of available web applications already out there. A second

way is to develop a generic mechanism for synchronizing existing

“single-user” web applications between two or more browsers.

There are many “single-user” web applications for which

synchronous sharing is an interesting option. Watching pictures

together on Flickr1, using Google Maps2 for planning a trip together

and choosing a movie together on a movie theatre web site, are some

examples. To avoid the adaptation of all these single-user services, a

generic co-browsing mechanism for synchronizing single-user web

applications between two or more browsers is needed. As indicated

in Figure 2, a generic co-browsing mechanism provides a low

development cost solution for sharing many interesting applications

together.

1 http://www.flickr.com

2 http://maps.google.com

Copyright is held by the International World Wide Web Conference

Committee (IW3C2). Distribution of these papers is limited to classroom

use, and personal use by others.

WWW 2009, April 20–24, 2009, Madrid, Spain.

ACM 978-1-60558-487-4/09/04.

.

WWW 2009 MADRID! Track: Web Engineering / Session: Client Side Web Engineering

941

single-userSingle-user

application

Generic

sharing

mechanism
multi-userexperience

s

Multi-user

experience

+ =>

Figure 2 Benefits of a generic co-browsing solution

Due to the extensive use of JavaScript and Ajax3, many web pages

are better described as a web application rather than as a web

document. Notable examples are online word processors like

Google Docs4, the IM web client Meebo5, and the Google e-mail

web client6. But the use of these technologies also causes state-of-

the-art co-browsing solutions as [4] and [7] to be not suited for such

type of web applications, since they have been developed for static

web pages. They do not support the synchronization of the dynamic

parts and the JavaScript and Ajax interactions of web pages.

The main contribution of this work is that is presents two co-

browsing solutions that enable the synchronization of Ajax-based

web-applications which make extensive use of JavaScript and

XMLHttpRequest interactions. Both solutions are based on

synchronizing the browsers at the DOM level. The first solution

synchronizes the browsers by directly synchronizing the changes

made on the DOM tree (JavaScript engine output synchronization).

The second solution synchronizes the browser by synchronizing UI

events and incoming data and thus keeping the JavaScript engines

synchronized (JavaScript engine input synchronization). Though

the latter solution is potentially less robust it offers the better user

experience and is more scalable. Both solutions can be

implemented in JavaScript and require no extensions to a normal

browsers. The presented solution has been developed for a internet-

connected, browser-based TV. Such a platform has some limitations

compared to the PC domain. One important aspect is that it is not as

simple as on a PC to install additional plug-ins in a browser or even

install a new browser on a TV. Moreover, the solution should work

across browsers from different vendors and CE manufacturers

adhering to the same (minimal) standard (e.g. Web4CE [1]). Due to

that, we strive for a solution that requires no changes to the browser

and can be implemented completely in JavaScript. Thus, the

presented DOM level solution is a perfect match.

Besides the TV platform, a co-browsing solution is also applicable

for other platforms, like PCs and mobile phones, which provide

access to web-based application through a browser. As indicated

above, a co-browsing solution can be applied for experience sharing

applications in the consumer domain, but can also be used for

collaboration frameworks in the professional domain. Here, next to

frameworks that require a browser plug-in, like e.g. WebEx, a

number of collaborative frameworks are currently emerging which

use only the native browser at the client side, such as [11]. Sharing

single-user web pages is clearly a valuable addition to any

collaboration platform.

This paper is structured as follows. The next section gives an

overview of the conceptual model of a browser. This model is used

in Section 3 to provide an overview of JavaScript engine input and

output synchronization as two methods for co-browsing dynamic

(JavaScripted) web pages. This section also gives an overview of

3 Asynchronous JavaScript and XML

4 http://docs.google.com/

5 http://www.meebo.com

6 http://gmail.com

different deployment options and compares the two basic methods.

In Section 4, the method based on JavaScript engine input

synchronization is described and discussed in more detail. Section 5

gives a short description of our proof-of-concept demonstrator,

based on Firefox, which makes use of the presented co-browsing

solution in an experience sharing framework for browser-based

networked TVs. An overview on related work is given in Section 6

and the paper concludes with Section 7.

2. BROWSER MODEL
In this section, we will give a conceptual model of an HTML

browser for the purpose of explaining different possible co-browsing

solutions. This gives an insight into how two or more browsers can

be synchronized for co-browsing. The information provided here is

based mostly on documentation of the Firefox browser7 and in some

details it may not be completely accurate for other browsers.

2.1 Rendering a web page
What happens when the browser is directed to a new URL? Figure 3

gives an overview of the following description. First, the browser

starts fetching the data from the network, using the networking

library. As the data for the page streams in, it is transferred to the

layout engine, which typically runs in a separate thread, the UI

thread. The incoming HTML is parsed and a DOM tree

representation is constructed. In addition to building up a DOM

tree, modern CSS2 8 -compliant browsers also build up separate

rendering trees. Based on these two trees, the frame tree is built.

Once the frame tree is built, the “reflow” process determines where

the frames have to be displayed on the screen. In a last step, the

screen is painted, which is typically performed by making use of the

local platform graphics primitives and widgets.

HTML layout

engine

getContent(url)

OS graphical

primitives

OS networking

library

UI events

Render()

Javascript engine

Network

library

Execute(script) BOM API

Figure 3 Conceptual overview of a Mozilla-based browser

After the page is loaded and rendered, the user can start interacting

with the page. Actions like moving the mouse, scrolling a frame,

filling-in a form or clicking on a link will generate UI events. The

native OS windowing system will forward these events via the

widget library to the layout engine. The layout engine will update

the browser screen area accordingly and if necessary dispatch

JavaScript UI events to registered event handlers. The term

JavaScript UI event is used for the events a browser generates and

sends to the JavaScript engine.

7 http://www.mozilla.org/newlayout/doc/
8 http://www.w3.org/TR/REC-CSS2/

WWW 2009 MADRID! Track: Web Engineering / Session: Client Side Web Engineering

942

http://docs.google.com/
http://www.meebo.com/
http://gmail.com/
http://www.mozilla.org/newlayout/doc/
http://www.w3.org/TR/REC-CSS2/

2.2 Interaction between the layout engine and

the JavaScript engine
As shown in Figure 3, the HTML layout engine of a browser also

takes care that the JavaScript included in the web page is executed

by invoking the JavaScript engine. Execution of JavaScript code

starts when the page is loaded9 . The layout engine initiates the

execution of all “initial” JavaScript code contained in a page. After

this “initial” JavaScript is executed, the remaining JavaScript, i.e.

the event handlers or the functions that have been scheduled by a

timer, will be invoked by the layout engine when the corresponding

event occurs or the corresponding timer expires. The JavaScript

code embedded in a web page can influence the layout engine or

even the browser in general by means of the following

“standardized” objects, which are collectively known as the Browser

Object Model (BOM). The main examples are:

• Window object:

Interactions with the browser window can be done via the

window10 object. Examples are window.location, to redirect

the browser to another URL, window.scroll(), to scroll the

window, and window.setTimeout() - to tell the JavaScript

engine to evaluate an expression after a specified amount of

time.

• Document object (DOM):

The document object represents the entire HTML document

and can be used to access and change all elements in a web

page. Examples are adding nodes, changing style attributes,

adding event listeners etc. For a complete description of the

document object, see [12].

• XMLHttpRequest object:

This object allows JavaScript code to send and receive data

to/from an HTTP server by creating an XMLHttpRequest

object and calling its open() and send() functions.

Web

application

(JavaScript

engine)
UI Events

DOM

 changes
HTML / Ajax

HTML

rendering

engine

Screen

Framebuffer

Figure 4 Browser model from the

JavaScript engine perspective

However, from the perspective of the JavaScript engine a simpler

browser model can be used as depicted in Figure 4. The JavaScript

engine conceptually has two types of input: incoming data from the

HTML service via the HTTP protocol and via the DOM and UI

input from the user via the native graphical primitives and the DOM.

The browser can be considered to consist of two parts: (1) a

JavaScript engine which executes the application logic and produces

HTML that is rendered by (2) the HTML rendering engine to the

screen.

9 JavaScript code can already be executed before the complete

page has been loaded, similar to the way an initial part of the

page can already be rendered before the complete page is

loaded. It is completely up to the browser to decide when to

start displaying content and executing JavaScript.

10 http://www.w3schools.com/HTMLDOM/dom_obj_window.asp

3. CO-BROWSING SOLUTIONS
As described before, the co-browsing solution should support the

synchronization of the JavaScript and XMLHttpRequest interactions

of dynamic web pages. Based on the discussion in the previous

section, this leads to two main methods for synchronizing scripted

web pages: (1) Synchronization of the JavaScript engine input, i.e.

UI event and HTML/ XMLHttpRequest synchronization, and (2)

Synchronizing the JavaScript engine output, i.e. DOM tree

synchronization 11 . As depicted Figure 5, the different methods

reside on different levels.

Web application
(JavaScript engine)

UI Events

DOM tree changes

HTML / XHR

Web application
(JavaScript engine)

UI Events

DOM tree changes

UI event

synchronization

DOM tree

synchronization

HTML / Ajax
HTML / XHR

synchronization

HTML rendering

engine

HTML rendering

engine

Screen Screen

Framebuffer

synchronisation

Screen capture

synchronisation

Figure 5 Overview of basic co-browsing options.

(XHR stands for XMLHttpRequest)

1. JavaScript engine input synchronization:

This method relies on keeping the JavaScript engines in all

involved browsers synchronized, and thus indirectly also the

DOM tree. To do this, both the data that the browsers receive

from the web server and the JavaScript UI events happening at

all browsers must be synchronized. UI event synchronization

means that all user events injected by the layout engine into the

JavaScript engine of one browser must also be injected into the

JavaScript engine of the other browsers in the same order.

Consequently, the JavaScript engine of every browser is

running and only JavaScript UI events need to be sent over. If

the co-browsed web service adheres to the web model in which

each URL points to a unique piece of information the

HTML/XMLHttpRequest data synchronization is

automatically cared for. However, for HTML services that

sometimes return different data for the same URL, or keep

complicated state information (e.g. a transaction in an online

shopping site), a co-browse proxy is needed. The co-browse

proxy ensures that all the co-browsers receive the same

data 12 and that, for the co-browsed HTML service, the co-

browsers look like one single browser.

11 Capturing the screen using e.g. an additional camera and doing

framebuffer-level synchronization are non co-browsing

solutions and will not be discussed further.

12 There are timing issues which needs additional synchronization.

This will be discussed in detail in section 4.

WWW 2009 MADRID! Track: Web Engineering / Session: Client Side Web Engineering

943

http://www.w3schools.com/HTMLDOM/dom_obj_window.asp

2. JavaScript engine output synchronization:

In this method, the co-browsing code listens for DOM tree

changes in one browser, the reference browser. If the

JavaScript engine of the reference browser updates the DOM

tree, this DOM tree update is sent to the other browsers, the

client browsers. The co-browsing code in the client browsers

receives incoming DOM tree updates and uses the DOM

interface to adapt the DOM tree of the web application. In this

solution, only one browser communicates with the web server.

This also means that transferring control to another browser is

not trivial, because it would involve sending over the state of

the JavaScript engine from the reference browser to one of the

client browsers. If all ends are allowed to interact with the web-

application13, all UI events have to be sent to the reference

browser. As opposed to method 1, the events are only executed

in the reference browser. Only the reference browser is visible

to the co-browsed HTML service, so that also in thus variant

only one request to the service is generated for all co-browsers.

Therefore, also HTML services that return different data for the

same URL or HTML services that keep complicated state

information are by default handled correctly in this method.

3.1 Different deployment options
The two fundamental co-browsing methods explained in the

previous sections can be deployed in multiple ways. We list here the

most realistic ones. Note that for Figure 6 to Figure 9, a circular

arrow in a browser indicates that in this browser the JavaScript code

of the co-browsed web application is executed, otherwise it is not.

In the following figures, the HTML service denotes the backend

components which are serving the web-application which is co-

browsed. Browser 1 and Browser 2 denotes the clients doing co-

browsing including all necessary co-browsing functionality and

deployment specific functionality which is described in the

following. All other components are deployment specific and are

described for each option in detail.

1. JavaScript engine input synchronization:

All locally generated UI events are intercepted by the co-

browsing code and the default actions and associated event

handlers are not executed. Instead, they are sent over to a UI

event ordering service. This service does global ordering of the

events so that all events are received at all ends in exactly the

same order (so-called globally ordered multicast). Without a UI

event ordering service only a master-slave co-browsing

solution would be possible. All end points receive the ordered

events and inject them into the event queue of the JavaScript

engine executing the web-application. Without a UI event

ordering service only a master-slave co-browsing solution

would be possible. A co-browse proxy is needed to

synchronize the content coming from the HTML service.

For the co-browse proxy functionality, two deployment options

can be distinguished:

13 It is also possible that only the user using the reference browser

has control. Such a situation is called Master-Slave.

a. Using a backend co-browse proxy server:

A backend co-browse proxy acts on behalf of the clients

and requests all data (including XMLHttpRequests) from

the web service. It caches the data and ensures all

browsers receive the same data. This solution is shown in

Figure 6.

Co-browse

proxy

HTML service

UI event

ordering service

Browser 1 Browser 2

(1) UI events

(2) ordered

 UI events

Figure 6 UI event synchronization combined

with a backend proxy

b. Using a client-side co-browse proxy:

The co-browse proxy functionality is implemented on one

of the co-browsers. Every time a new web page is loaded,

the proxy code will send the HTML of this new page to

the other co-browsers, using an HTTP forwarding service.

Within the other co-browsers, the co-browsing code will

receive this HTML and use it to overwrite the document

of the co-browsed frame. Also all data received via an

XMLHttpRequest object must be synchronized (see

Section 4). Note that with this method it is not possible to

proxy binary data like pictures and movies. Figure 7 gives

an overview of this solution.

HTML service
UI event

ordering service

Browser 1 Browser 2

(3) UI events
(4) Ordered UI

events

(1) XML

HTTP forward

service

(2) XML

Figure 7 UI event synchronization combined with

a client-side proxy

2. JavaScript engine output synchronization:

All locally generated UI events are intercepted by the co-

browsing code and the associated event handlers and default

actions are not executed. Instead, they are sent to a reference

browser, which injects the events into the event queue of the

JavaScript engine executing the web-application. Only the

reference browser runs the JavaScript code causing changes in

the DOM tree. A description of these DOM tree changes are

forwarded to all other co-browsers which apply them to their

local DOM tree.

WWW 2009 MADRID! Track: Web Engineering / Session: Client Side Web Engineering

944

For the reference browser, two deployment options can be

distinguished:

a. Backend reference browser:

The backend reference browser does not have any local

user interaction. Instead, the user interaction of every co-

browsing user is sent to the reference browser in form of

UI event descriptions. These events are injected into the

JavaScript engine executing the JavaScript of the web

application. If the JavaScript causes changes to the

application’s DOM tree, updates of these changes are sent

to the client browsers and applied to their DOM tree. The

client browsers do not execute the web-application’s

JavaScript code. It is only executed on the back-end. See

Figure 8 for an overview.

HTML service

Reference

browser

Browser 1 Browser 2

(1) UI events (2) DOM tree update

Figure 8 A backend reference browser

b. Client-side reference browser:

In the solution depicted in Figure 9, one of the co-

browsers plays the role of the reference browser. All other

co-browsers send the UI events to this reference browser

using an event forwarding service. As opposed to the UI

event synchronization, this service only enables peer-to-

peer communication between the browsers and does not

need to do any event ordering. The received UI events are

injected into the reference browser, and all DOM tree

updates caused by local and remote UI events are

forwarded to the client browsers using a DOM forward

service. Note that only the reference browser executes the

web-application’s JavaScript code. Compared to the

backend reference browser, this solution is far more

scalable.

HTML service

Browser 1

(reference)
Browser 2

(1) UI events(3) DOM tree update

Event forward

service

(4) DOM tree update(2) UI events

DOM forward

service

Figure 9 A reference browser on one of the client

devices

3.2 Comparison
From the above description of the two methods for co-browsing, the

following advantages and disadvantages of the methods can be

deducted.

1. Robustness:

JavaScript engine output synchronization is robust because

resynchronization is easy to implement by just sending over the

complete DOM tree. JavaScript engine input synchronization is

less robust, because it may be difficult to keep the JavaScript

engines in sync. Resynchronization is difficult to implement,

because this would mean sending over the DOM tree and the

state of the JavaScript engine.

2. User experience:

JavaScript engine input synchronization has a better UI

experience, especially for web page containing animations and

video content. JavaScript engine input synchronization allows

the users to quit a co-browse session at any point in time and

continue browsing from the exact place they stopped the co-

browsing session (thus a seamless “break-out” of the user is

possible)14 . The output synchronization cannot support that

easily; the state of the JavaScript engine has to be transferred to

all client browsers.

3. Scalability:

JavaScript engine output synchronization generates more

network traffic than input synchronization, since the co-

browsers have to send both DOM tree updates and UI events to

the reference browser. In case of input synchronization, only

the UI events have to be sent. The actual amount of traffic

depends on the deployment variants. From the perspective of

multiple independent co-browsing sessions, the major

disadvantage in both cases with infrastructure support is that a

centralized solution is less scalable than the client site

implementation. From the perspective of one co-browsing

session, the local co-browse proxy limits the amount of users

drastically, because the upload bandwidth needed for data

forwarding is limited.

4. Implementation effort:

DOM tree synchronization is a much simpler and robust

approach and thus the implementation effort is lower than in

the UI event synchronization.

For all variants, it holds that the concurrent interaction of multiple

users with a web-application can cause interpretation problems of

the user interaction. In case of JavaScript engine input

synchronization, the co-browse functionality only ensures that the

UI events are executed in exactly the same order on all ends. But

this problem is not specific for co-browsing. Also multi-user

interaction on the same device can cause problems. The only generic

solution is to disallow concurrent interaction and use master-slave

kind of co-browsing.

4. JAVASCRIPT ENGINE INPUT

SYNCHRONIZATION
We consider the co-browsing based JavaScript engine input

synchronization the most interesting because it offers the best user

experience and the best scalability. In this section, we will describe

this method (1.a in the previous section) in more detail and we will

describe how this method can be implemented in JavaScript. We

make use of the fact that JavaScript is an event-based language and

is single-threaded. The co-browsing solution consists of three parts:

14 Starting of co-browsing at any point in time is not supported by

the proposed system. This is an aspect of future work.

WWW 2009 MADRID! Track: Web Engineering / Session: Client Side Web Engineering

945

the co-browsing code on the client side, the co-browse proxy and

the UI event ordering service. The UI event ordering service ensures

that the events sent by the co-browsing code of all browsers are

received in exactly the same order at all ends (globally ordered

multicast). This is achieved by merely following a first-in-first-out

policy. Moreover, it also provides a communication channel for the

case that peer-to-peer connections between the browsers are not

possible due to firewalls or Network Address Translation (NAT).We

assume that there is a proxy server that takes care that the two co-

browsers receive the same HTTP packets. In this variant, receiving

different data for the same URL from a server or a server that keeps

state information is not an issue. First, we describe the

synchronization of UI events. Then we describe the synchronization

of other JavaScript engine inputs. Finally we describe how the client

side JavaScript code can be deployed on the browsers.

4.1 UI event synchronization
The basic challenge is to keep the JavaScript engines in all browsers

synchronized by triggering at both sides the same UI events in the

exact same order. In all browsers, the co-browsing code should

perform the following basic steps when a new web page is co-

browsed:

1. After a new page has been loaded, take care that every HTML

element has a unique identifier.

2. Intercept all locally generated UI events, disable them and send

a description of them to the UI event ordering service.

3. Start listening to event descriptions coming from the event

ordering service.

4. For every event description received from the event ordering

service perform the necessary actions.

We will now describe these steps in more detail. For all co-

browsers, the first step is to make sure that every HTML node in the

HTML document has a unique ID. Therefore, a script is used that

assigns an identifier to every node without an identifier. It is

executed after the new page has been loaded which is triggered by

the “load” event. All default user actions are blocked until the

load event had occurred since user interactions that take place

before this event cannot (always) be transmitted.

All locally generated UI events must be intercepted, captured and

sent to the event ordering service. These are the DOM level 2 core

events [11] (DOMFocusIn, DOMFocusOut, DOMActivate,

mousedown, mouseup, click, mouseover, mousemove, and

mouseout), the key events (keydown, keyup, and keypress) and the

HTML events (submit, focus, blur, resize, and scroll). Capturing the

UI events can be done by registering event handlers by means of the

addEventListener() method provided by the DOM interface. Since

the UI events must first be intercepted and sent to the UI event

ordering service, the local handling of the user input must be

disabled. This means that the default action of the browser should

be blocked (e.g. loading of a new page when an anchor has been

clicked) and that no JavaScript event handlers of the original web

pages may be called. The former can be achieved by the use of the

DOM function preventDefault(). To prevent JavaScript event

handlers from processing an event, it is possible to use the

stopPropagation() function. The code snippet in Figure 10 shows

how all local event handling can be disabled for the “click” event.

document.addEventListener(

'click',

function(event){

event.stopPropagation();

event.preventDefault();

},

 true

);

Figure 10 Pseudo-code for intercepting and

blocking of local mouse click events

Sending over an event description to the UI event ordering service

can be done by first serializing the event into an XML string and

then sending it using the XMLHttpRequest object.

<event>

 <type>mouseover</type>

 <url>http://www.flickr.com</url>

 <target>cssf_351</target>

 <bubbles>true</bubbles>

 <cancelable>true</cancelable>

 <timeStamp>0</timestamp>

 <screenX>854</screenX>

 <screenY>494</screenY>

 <clientX>636</clientX>

 <clientY>354</clientY>

 <pageX>636</pageX>

 <pageY>2695</pageY>

 <ctrlKey>false</ctrlKey>

 <shiftKey>false</shiftKey>

 <altKey>false</altKey>

 <metaKey>false</metaKey>

 <button>0</button>

 <relatedTarget>null</relatedTarget>

</event>

Figure 11 UI event description in XML

Figure 11 gives an example of the syntax of an event description

that is sent over the event ordering service.

All clients receive an ordered stream of event descriptions from the

UI event ordering service. Receiving these events can again be done

through the use of the XMLHttpRequest object as described e.g. in

[10], or in case of Web4CE or Firefox by using a TCP connection.

For every event description received, the corresponding event can

be recreated and dispatched by using the functions

document.createEvent(), document.initEvent() and

document.dispatchEvent(), as exemplified by the following pseudo

code.

document.createEvent(eventtype);

document.initEvent(event);

target.dispatchEvent(event);

Figure 12 Pseudo-code for generating JavaScript UI events

These functions cause the associated JavaScript event handlers to be

called. This keeps the user input for the JavaScript engines

synchronized. However, recreating and dispatching an “artificial”

DOM UI event does not always cause the associated default action

to be executed. For example, manually firing a “focus event” on a

document element does not cause the element to receive focus. The

focus() method must be used for that. Likewise, manually firing a

“submit event” does not submit a form. The submit() method must

be used for that. This is important for security reasons, as it prevents

scripts from simulating user actions that interact with the browser

itself. The only actions that happen after calling

target.dispatchEvent() for a specific event is that the associated

JavaScript event handlers are executed.

4.2 Synchronizing other JavaScript engine

interactions
In the previous section, we have described the solution for co-

browsing based on UI event synchronization and how the user input

WWW 2009 MADRID! Track: Web Engineering / Session: Client Side Web Engineering

946

for the JavaScript engines can be kept synchronized even though

different UI events are generated at both sides simultaneously.

However, to keep the JavaScript engines synchronized not only the

external UI events have to be synchronized, but also every

interaction of the JavaScript code from the co-browsed web page

with the outside has to be synchronized. The JavaScript engine runs

in a sandbox and can only interact with elements outside the

sandbox through the BOM functions and the BOM properties

provided by the browser. Some of these BOM functions and

properties can cause loss of synchronization, for example:

window.random(), window.setTimeout() and

window.setTimeInterval(), window.alert(), window.confirm(),

window.show(), window.open() etc. Also requests via the

XMLHttpRequest object must be synchronized. An overview is

given in the following Figure 13.

JavaScript Engine

window.setTimeout()

date.getTime()

XMLHttpRequest.send()

XMLHttpRequest.open()

window.random()

UI events HTML

window.clearTimeInterval()

…

Figure 13 Interactions of the JavaScript engine via the BOM

The actions and return values of these functions need to be

synchronized. This can be done by redefining these functions,

before they are called. We will show how this can be done by taking

the window.setTimeout() function as an example. The effects of the

other functions can be synchronized in a similar way. The

window.setTimeout() function will register a callback function that

will be called by the JavaScript engine after the specified amount of

time. If this callback function is not called between exactly the same

event handlers on the different co-browsers, the synchronization can

be broken. The exact timing of the callback execution is not the

issue. It is important that within all browsers the timeout callbacks

are inserted at the same place in the event queue. The basic idea of

the solution is to redefine the window.setTimeout() function. If the

redefined window.setTimeout() is called, the callback function is

stored and a sequence number is assigned. Only on one browser (the

master) a timeout is registered, which sends a notification with the

sequence number to the co-browsers using the UI event ordering

service when executed. All co-browsers execute the timeout’s

callback when receiving this event. The pseudo-code in Figure 14

shows how the setTimeout() function of the master browser can be

redefined.

old_setTimeout = window.setTimeout;

new_setTimeout = function(callback,time){

 new_callback = new function(){

 send_to_ui_event_ordering_service

(callback);

 }

 old_setTimeout(new_callback, time);

}

window.setTimeout = new_setTimeout;

Figure 14 Pseude-code for synchronising the

window.setTimeout() function

Other issues can be solved as follows:

File upload: File upload cannot be handled by JavaScript code on

the client side alone. There are two options. Either file upload is

disabled on both sides or file upload is only enabled on one client

and the co-browse proxy is needed to make sure both clients receive

the same response from the server after the file is uploaded.

Cookies: Web pages have the possibility to save state at the client

side by means of cookies. The co-browse proxy has to decide of

which client the cookies are used. Another approach is that

JavaScript code is used to synchronize the cookies at both sides.

Mouse pointer: Another issue is how to deal with the mouse pointer

during a co-browsing session. There are basically two options: only

one pointer is used, which is shared by all clients, or every client has

his or her own visible pointer, such that multiple pointers are visible

on the screen. Both options are equally valid and depend on the user

preferences. In our implementation we have opted for the second

option.

4.3 Co-browsing client code deployment
As can be seen from the previous section, the code needed for

keeping the JavaScript engine synchronized can be implemented in

JavaScript15 . We describe now how this co-browsing JavaScript

code can be added to the browser:

1. Insertion by co-browse proxy:

The co-browse proxy needed in the UI event synchronization is

able to add additional code into the downloaded web-pages. In

this case, the web-applications will get “build-in” support for

co-browsing. Since the proxy is not always necessary the co-

browsing solution gets less scalable because the browser

always has to download at least the initial page through the co-

browse proxy.

2. JavaScript browser add-on:

Many browsers support the development of browser add-ons

developed in JavaScript. A variant of this is that the co-

browsing JavaScript code can be in the form of a user script

such as Greasemonkey16 for Firefox or Greasekit17 for Safari.

3. Co-browsing JavaScript code in a (hidden) iframe:

In this option, the user has to load a portal site first. The user

than can use this portal site to browse to single-user web

applications and start a co-browsing session with others. Here,

the code for co-browsing (and also for session set-up) resides

in a (hidden) frame. This frame must be permanently available

during the co-browsing session. The JavaScript in this frame

should also have special privileges (cross-domain scripting) to

be able to listen to events happening in the co-browsed frames

and to makes changes in these frames. This option is depicted

in Figure 15. The top frame of the browser consists of two sub-

frames. One frame is the community frame which serves for

communication purposes (buddy list, IM, video chat) and it can

be hidden when not needed. The other frame is the application

frame, which is shared, and where the web service being co-

15Plug-ins or native implementations in the browser are of course

always possible if needed to improve performance on embedded

devices.

16 http://www.greasespot.net/

17 http://pimpmysafari.com/plugins/greasekit-10

WWW 2009 MADRID! Track: Web Engineering / Session: Client Side Web Engineering

947

http://www.greasespot.net/
http://pimpmysafari.com/plugins/greasekit-10

browsed is shown. The community frame also contains the

necessary JavaScript code for co-browsing.

Co-browsed web application

(client side)

Community

frame
Application frame

Figure 15 A possible UI layout for a co-browsing application.

5. IMPLEMENTATION
We have implemented the co-browsing method as described in the

previous section in a proof-of-concept demonstrator. The client side

of the demonstrator is based on the Firefox browser.

Figure 16 Two people remotely watching vacation pictures

together on Google Maps.

In a first step, we had implemented the co-browsing as a

Greasemonkey script. Though this worked well, we wanted to

extend this co-browsing application with presence, instant

messaging and video chat functionality. To this end, we moved the

co-browsing JavaScript code into a separate iframe, which we refer

to as the community frame as explained in the previous sections. We

also implemented an XMPP client in JavaScript and added this to

the community frame. The XMPP client provides presence, instant

messaging and session initialization for video chat or co-browsing.

We added video chat functionality by means of the Adobe Flash

Player18 and the Adobe Flash Media Server 219. Figure 16 shows a

screen shot from this first prototype version where the community

frame is still clearly visible on the left.

In later versions of the demonstrator (Figure 17), the community

frame is hidden, but it overlays its content transparently over the

application frame when needed, for example to show the buddy list,

show the video chat and to show incoming invitations.

Moving the JavaScript code for co-browsing to the community

frame means that it needs extra security privileges (cross-domain

scripting) to be able to listen to events happening in the co-browsed

application frame and to make changes to it. For the event ordering

service, we use the XMPP chat room mechanism which already

provides the necessary ordering functionality. The co-browse proxy

is implemented as a backend service in Java.

18 http://www.macromedia.com/software/flash/about/

19 http://www.adobe.com/products/flashmediaserver/

Figure 17 Bob and Alice looking a nice restaurant together with

their (remote) friends.

To communicate with the XMPP server, we use the TCP socket

mechanism provided by the Firefox browser available for trusted or

signed JavaScript code. However, there also exist

XMLHttpRequest-based implementations in JavaScript for XMPP

[10]. For CE devices, the Web4CE standard supports outgoing TCP

connections via the Web4CE specific Notifsocket mechanism.

Figure 18 gives an overview of the high-level architecture of the

demonstrator.

HTML

service

Co-browse

proxy

 } In home

 } Support

services

HTML

HTML
Presence, IM,

UI events

XMPP server

(incl. chat room)

Browser 1 Browser 2 Browser N

Flash Media

Server

Video chat

Figure 18 Overview of the demonstrator architecture.

The Firefox browser is used without making any changes, except for

configuring it to allow trusted or signed JavaScript to receive cross-

domain scripting permissions and to make use of the Firefox socket

mechanism. We also configured the Firefox browser to not allow

window pop-ups or open new windows which would break the co-

browsing synchronization.

Though the co-browsing solution was not developed with SVG in

mind, first tests with SVG documents are promising and indicate

that also SVG documents can be co-browsed with the current

solution

Our current demonstrator shows that it is possible to do co-browsing

of highly scripted web pages like e.g. Google Maps20 , Flickr21 ,

BrowseGoods 22 without loss of synchronization. However, for

many pages the co-browsing solution can still loose

synchronization. This is due to a number of issues with real-life web

pages:

20 http://maps.google.com

21 http://www.flickr.com

22 http://browsegoods.com/

WWW 2009 MADRID! Track: Web Engineering / Session: Client Side Web Engineering

948

http://www.macromedia.com/software/flash/about/
http://www.adobe.com/products/flashmediaserver/
http://maps.google.com/
http://www.flickr.com/
http://browsegoods.com/

- Flash is used a lot, but it is not possible to synchronize flash on

the DOM level of the browser. In the demonstrator, a Flash

object is simply removed from the page.

- CSS style rules are not triggered by JavaScript generated UI

events. Style rules do not have lasting effect and most often

don’t cause loss of synchronization. A synchronization loss can

happen when the application of a style rule changes the size of

an HTML element and hence causes a change in the layout of

the web page. A possible solution is to listen with DOM

Mutation event listeners to changes in the size of HTML

elements.

Many other issues can be solved by implementing customized

solutions in the co-browsing methods for common web page errors

and browsers peculiarities. This is the approach we have taken in

our demonstrator.

However, web pages that want to support co-browsing can adhere to

a few simple guidelines that make the co-browsing solution

significantly simpler to implement and more robust. Examples are to

use always a unique URL for a unique piece of data, to only start

executing JavaScript code after the onload event and to use SVG

instead of Flash.

There are also a number of browser features already supported by

some browsers, which can make the co-browsing solution simpler

and/or more robust. Here are a few important examples:

- Support for the beforeExternalScript event:

This event is currently supported only by the Opera browser

and is raised before any JavaScript code of a newly loaded web

page is executed. It provides a convenient entry point to make

the necessary redefinitions of various JavaScript methods.

- Support for getElementFromPoint():

This function is currently only supported by Firefox and

Internet Explorer and returns the HTML element located at the

specified client screen coordinates. This removes the need to

assign an identifier for every HTML element

- Support for SVG:

SVG can then be an alternative for Flash.

- Triggering of CSS rules by events:

CSS rules should also be triggered by an event which is

generated through JavaScript by the event.dispatch() function.

The demonstrator implementation introduced in this section is under

ongoing development and is extended continuously. Currently we

are working on video object synchronization. This will provide

synchronized play-out of video objects like Flash video or HTML 5

video. This enables the users to co-watch web-based video on

demand. Another ongoing work is the extension of our sharing

framework to support more than two users in a co-browsing session.

We are also working on an API that allows third party developers to

use the communication and synchronization platform to develop

multi-user web applications.

6. RELATED WORK
There exist already a number of solutions that provide DOM-level

synchronization. All solutions provide the basic web co-navigation

functionality that ensures that all the browsers of a session display

the same URL. Each co-browsing solution enhances this basic

functionality in one or more ways: synchronous scrolling, a shared

pointer, chat functionality, co-annotating web pages in real-time,

etc. However, current solutions only provide mechanisms for

synchronizing the static part of web pages and in some cases support

for additional features such as synchronizing forms or synchronized

scrolling. None of these co-browsing solutions provide support to

synchronize the JavaScript interactions of the web pages. A second

difference is that the client side of existing co-browsing solutions is

often implemented as Java applets whereas in our solution, the client

side can be implemented in JavaScript. This is for example the case

in [5], [6] and [7].

The GroupWeb [6] co-browsing solution supports synchronous

scrolling, telepointers for enacting gestures, and group annotations

that can be attached to pages. GroupWeb is based on a backend

proxy server and client-side Java-applet technology.

In [3] a co-browsing solution is described in which each user's

computer has two instances of the web browser running. One

instance contains the target web page that is being collaboratively

viewed. The other window contains a control panel and a monitor

routine. The monitor routine periodically analyzes the browser

instance containing the target web page, to see if any changes have

occurred. If a change is detected, such as if the user has scrolled a

scrollbar, then that change is transmitted to the other browser. This

solution synchronizes attributes such as the browser window size,

window and frame web page sources, and scroll bar positions. It

also synchronizes form element content (e.g. text fields, checkboxes,

select lists).

The co-browsing solution presented in [5] is based on a backend co-

browse proxy server and Java applet technology at the client side.

This work focuses on symmetric co-browsing where each

participating user can take the lead and guide others while browsing

web pages. This work proposes the use of a token to determine

which browser is the master browser at any moment in time; only

the user actions of the browser that has the token have effect. In our

solution, all users are at any moment in control. The UI event

ordering service ensures that all browsers process incoming UI

events and data in exactly the same order. In this way, we keep the

browsers always synchronized.

Colab [7] is a co-browsing solution that is also based on a backend

co-browse proxy server and requires support for Java applets by the

browser. The main focus of this work is on easily creating and

releasing synchronization relations among users.

Screen sharing solutions, which are based on synchronizing the

frame buffer, are also used for co-browsing. A screen sharing

solution has the main advantage that it is conceptually very simple

and the risk of loss of synchronization is very low. However, screen

sharing solutions require a lot of bandwidth when there are frequent

changes on the screen through animations, slide shows or movie

clips for example. Due to the asymmetrical nature of most internet

connections currently available, the upstream bandwidth is the

limiting factor in shared applications systems. A simple calculation23

shows that for the JavaScript Engine input synchronization method

and implementation presented in this paper the upload bandwidth is

realistically at most 120 Kbit/s. Initial measurements on our

demonstrator confirm this estimation. Peaks in bandwidth happen

when many UI events occur. This occurs, for example, when the

23 One UI event description as described in Section 4 can easily be

reduced to a maximum of 150 bytes. During browsing, a

maximum of 100 UI events per second are realistically possible.

This leads to a maximum upstream bandwidth of 15 Kbyte/s or

120 Kbit/s at one client.

WWW 2009 MADRID! Track: Web Engineering / Session: Client Side Web Engineering

949

mouse is moved (generating a lot of “mousemove” events), when a

key is pressed continuously or during scrolling. To compare this

with screen sharing solutions, we have tested two screen-sharing

products: Microsoft NetMeeting24 and Citrix GoToMeeting25 on a

100 Mbit LAN. Given enough bandwidth and for static web pages,

both NetMeeting and GoToMeeting performed relatively well.

However, when web pages contain frequent screen updates, both

systems needed high bandwidth and still had a low frame rate.

GoToMeeting used a maximum of around 4 Mbit/s in case of

frequent changes on the screen and Microsoft NetMeeting around

20Mbit/s. Even when using this high bandwidth, NetMeeting

achieved a very low frame rate (at most 1 frame per second).

7. CONCLUSIONS
This paper introduces a co-browsing solution that allows the co-

browsing of dynamic, JavaScripted web pages. The solution works

at the DOM level, can be implemented in JavaScript and requires no

extensions to the browser. Compared with screen sharing solutions,

the needed bandwidth for synchronization is relatively low and it

offers a better user experience.

While the presented solution is aimed at Web4CE, it is also

applicable to dynamic (X)HTML web pages on PCs and mobile

devices. Also for professional collaboration in the PC world, where

there is currently a trend to also provide collaborative applications

via a native browser, we believe that our co-browsing solution can

play a valuable role.

The co-browsing solution that we propose is generic in that it does

not pose requirements to web pages. However, if web developers

adhere to a few basic guidelines to support co-browsing, the

solution can be made much simpler and also a co-browsing proxy

can be left out. Similarly, the support of a few features by the

browser can simplify the implementation and can make it more

robust against synchronization losses. Moreover, the solution could

also be directly integrated into standard browsers which also would

improve the performance on embedded platforms (e.g. mobiles and

TVs).

The presented co-browsing solution enables users to start a co-

browsing session from a given URL. This does not allow a user to

start a co-browsing session at any point in time, since the JavaScript

application may have changed state after loading the URL e.g. due

to user interaction. We refer to this type of immediate sharing as

catch-up co-browsing and we are currently investigating possible

mechanisms to provide such functionality. Other aspects of further

work include the co-watching of web-based multimedia content and

an extended session management which includes session with

multiple users, content items and services.

With our proof-of-concept demonstrator we’ve shown the technical

feasibility of our solution. The demonstrator provides an

“Experience sharing” framework which combines the co-browsing

of arbitrary (multimedia) web application with communication

(audio and video chat) and targets the usage on a TV from the

comfort of the living room.

24 http://www.microsoft.com/windows/NetMeeting/default.ASP

25 https://www.gotomeeting.com/

8. REFERENCES
[1] Consumer Electronics Association (CEA), CEA-2014 Web-

based Protocol and Framework for Remote User Interfaces on

UPnP™ Networks and the Internet (Web4CE), June 2006,

http://www.ce.org/standards/StandardDetails.aspx?Id=2865&n

umber=CEA-2014

[2] Dees, W., Shrubsole, P.; Web4CE: Accessing web-based

applications on consumer devices; 2007;

http://www2007.org/program/poster.php?id=1017

[3] Esenther, A.; Instant Co-Browsing: Lightweight Real-Time

Collaborative Web Browsing; In Proc. of the 11th Int. WWW

Conference; 2002.

[4] Farnham, S., Zaner, M., Cheng, L.,; Supporting Sociability in

a Shared Browser; Virtual Worlds Group, Microsoft Research;

[5] Gerosa, L., Giordani, A., Ronchetti.; Symmetric Synchronous

Collaborative Navigation; Proceedings of the 2004 IADIS

International WWW/Internet Conference, Madrid, Spain;

2004.

[6] Greenberg, S., Roseman, M.; GroupWeb: a www browser as

real-time groupware; ACM; 1996.

[7] Hoyos-Rivera, G. , Lima-Gomes, R., Courtiat, J.; CoLab: A

Flexible Collaborative Web Browsing Tool; Proceedings of

the 19th International Conference on Advanced Information

Networking and Applications; 2005.

[8] Lowet D., Shrubsole P.; Content sharing and experience

sharing with Web4CE; TICSP Adjunct Proceedings of

EuroITV 2007.

[9] OpenIPTV forum; Functional Architecture – V 1.1,; 2008;

http://www.openiptvforum.org/docs/OpenIPTV-

Functional_Architecture-V1_1-2008-01-15_APPROVED.pdf

[10] Paterson, I., Smith, D., Saint-Andre, P.; XEP-0124:

Bidirectional-streams Over Synchronous HTTP (BOSH);

Version 1.7; 2008; http://www.jabber.org/jeps/jep-0124.html

[11] Pixley, T.; Document Object Model (DOM) Level 2 Events

specification; Version 1.0; 2000;

http://www.w3.org/TR/DOM-Level-2-Events/

[12] Stenback, J., Le Hegaret, P., Le Hors, A.; Document Object

Model (DOM) Level 2 HTML Specification; W3C

Recommendation; 2003.

[13] Wang, F., Rabsch, C., Liu, P.. Native Web Browser Enabled

SVG-based Collaborative Multimedia Annotation for Medical

Image. ICDE 2008: 1219-1228

[14] Waterson, C.. Gecko overview; June 2002;

www.mozilla.org/newlayout/doc/gecko-overview.ppt

WWW 2009 MADRID! Track: Web Engineering / Session: Client Side Web Engineering

950

http://www.microsoft.com/windows/NetMeeting/default.ASP
https://www.gotomeeting.com/
http://www.ce.org/standards/StandardDetails.aspx?Id=2865&number=CEA-2014
http://www.ce.org/standards/StandardDetails.aspx?Id=2865&number=CEA-2014
http://www2007.org/program/poster.php?id=1017
http://www.openiptvforum.org/docs/OpenIPTV-Functional_Architecture-V1_1-2008-01-15_APPROVED.pdf
http://www.openiptvforum.org/docs/OpenIPTV-Functional_Architecture-V1_1-2008-01-15_APPROVED.pdf
http://www.jabber.org/jeps/jep-0124.html
http://www.w3.org/TR/DOM-Level-2-Events/

