creators_name: Lin, Yu-Ru creators_name: Sun, Jimeng creators_name: Castro, Paul creators_name: Konuru, Ravi creators_name: Sundaram, Hari creators_name: Kelliher, Aisling type: conference_item datestamp: 2009-04-06 19:14:24 lastmod: 2009-04-07 14:03:12 metadata_visibility: show title: Extracting Community Structure through Relational Hypergraphs ispublished: pub full_text_status: public pres_type: poster abstract: Social media websites promote diverse user interaction on media objects as well as user actions with respect to other users. The goal of this work is to discover community structure in rich media social networks, and observe how it evolves over time, through analysis of multi-relational data. The problem is important in the enterprise domain where extracting emergent community structure on enterprise social media, can help in forming new collaborative teams, aid in expertise discovery, and guide long term enterprise reorganization. Our approach consists of three main parts: (1) a relational hypergraph model for modeling various social context and interactions; (2) a novel hypergraph factorization method for community extraction on multi-relational social data; (3) an online method to handle temporal evolution through incremental hypergraph factorization. Extensive experiments on real-world enterprise data suggest that our technique is scalable and can extract meaningful communities. To evaluate the quality of our mining results, we use our method to predict users’ future interests. Our prediction outperforms baseline methods (frequency counts, pLSA) by 36-250% on the average, indicating the utility of leveraging multi-relational social context by using our method. date: 2009-04 pagerange: 1213-1213 event_title: 18th International World Wide Web Conference event_location: Madrid, Spain event_dates: April 20th-24th, 2009 event_type: conference refereed: TRUE citation: Lin, Yu-Ru and Sun, Jimeng and Castro, Paul and Konuru, Ravi and Sundaram, Hari and Kelliher, Aisling (2009) Extracting Community Structure through Relational Hypergraphs. In: 18th International World Wide Web Conference, April 20th-24th, 2009, Madrid, Spain. document_url: http://www2009.eprints.org/187/1/p1213.pdf