TY  - CONF
ID  - www200949
UR  - http://www2009.eprints.org/49/
A1  - Yi, Xing
A1  - Raghavan, Hema
A1  - Leggetter, Chris
Y1  - 2009/04//
N2  - Discovering users? speci?c and implicit geographic intention in web search can greatly help satisfy users? information needs. We build a geo intent analysis system that uses minimal supervision to learn a model from large amounts of web-search logs for this discovery. We build a city language model, which is a probabilistic representation of the language surrounding the mention of a city in web queries. We use several features derived from these language models to: (1) identify users? implicit geo intent and pinpoint the city corresponding to this intent, (2) determine whether the geo-intent is localized around the users? current geographic location, (3) predict cities for queries that have a mention of an entity that is located in a speci?c place. Experimental results demonstrate the effectiveness of using features derived from the city language model. We ?nd that (1) the system has over 90% precision and more than 74% accuracy for the task of detecting users? implicit city level geo intent (2) the system achieves more than 96% accuracy in determining whether implicit geo queries are local geo queries, neighbor region geo queries or none-of these (3) the city language model can effectively retrieve cities in locationspeci?c queries with high precision (88%) and recall (74%); human evaluation shows that the language model predicts city labels for location-speci?c queries with high accuracy (84.5%).
TI  - Discovering Users' Specific Geo Intention in Web Search
SP  - 481
M2  - Madrid, Spain
AV  - public
EP  - 481
T2  - 18th International World Wide Web Conference
ER  -