Cangelosi, Angelo and Greco, Alberto and Harnad, Stevan (2000) From Robotic Toil to Symbolic Theft: Grounding Transfer from Entry-Level to Higher-Level Categories. [Journal (Paginated)]
Full text available as:
Postscript
1095Kb |
Abstract
Neural network models of categorical perception (compression of within-category similarity and dilation of between-category differences) are applied to the symbol-grounding problem (of how to connect symbols with meanings) by connecting analog sensorimotor projections to arbitrary symbolic representations via learned category-invariance detectors in a hybrid symbolic/nonsymbolic system. Our nets are trained to categorize and name 50x50 pixel images (e.g., circles, ellipses, squares and rectangles) projected onto the receptive field of a 7x7 retina. They first learn to do prototype matching and then entry-level naming for the four kinds of stimuli, grounding their names directly in the input patterns via hidden-unit representations ("sensorimotor toil"). We show that a higher-level categorization (e.g., "symmetric" vs. "asymmetric") can learned in two very different ways: either (1) directly from the input, just as with the entry-level categories (i.e., by toil), or (2) indirectly, from boolean combinations of the grounded category names in the form of propositions describing the higher-order category ("symbolic theft"). We analyze the architectures and input conditions that allow grounding (in the form of compression/separation in internal similarity space) to be "transferred" in this second way from directly grounded entry-level category names to higher-order category names. Such hybrid models have implications for the evolution and learning of language.
Item Type: | Journal (Paginated) |
---|---|
Keywords: | symbol grounding, categorical perception, neural networks, robotics, language, perceptual learning recognition |
Subjects: | Psychology > Cognitive Psychology Computer Science > Neural Nets |
ID Code: | 1647 |
Deposited By: | Harnad, Stevan |
Deposited On: | 26 Jun 2001 |
Last Modified: | 11 Mar 2011 08:54 |
References in Article
Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page