Turney, Peter D. (1994) Theoretical analyses of cross-validation error and voting in instance-based learning. [Journal (Paginated)]
Full text available as:
PDF
156Kb |
Abstract
This paper begins with a general theory of error in cross-validation testing of algorithms for supervised learning from examples. It is assumed that the examples are described by attribute-value pairs, where the values are symbolic. Cross-validation requires a set of training examples and a set of testing examples. The value of the attribute that is to be predicted is known to the learner in the training set, but unknown in the testing set. The theory demonstrates that cross-validation error has two components: error on the training set (inaccuracy) and sensitivity to noise (instability). This general theory is then applied to voting in instance-based learning. Given an example in the testing set, a typical instance-based learning algorithm predicts the designated attribute by voting among the k nearest neighbors (the k most similar examples) to the testing example in the training set. Voting is intended to increase the stability (resistance to noise) of instance-based learning, but a theoretical analysis shows that there are circumstances in which voting can be destabilizing. The theory suggests ways to minimize cross-validation error, by insuring that voting is stable and does not adversely affect accuracy.
Item Type: | Journal (Paginated) |
---|---|
Subjects: | Computer Science > Artificial Intelligence Computer Science > Machine Learning Computer Science > Statistical Models |
ID Code: | 1821 |
Deposited By: | Turney, Peter |
Deposited On: | 13 Oct 2001 |
Last Modified: | 11 Mar 2011 08:54 |
References in Article
Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page