Cogprints

A Unifying Field in Logics: Neutrosophic Logic.

Smarandache, Florentin (1999) A Unifying Field in Logics: Neutrosophic Logic. [Book Chapter]

Full text available as:

[img] PDF
522Kb

Abstract

The author makes an introduction to non-standard analysis, then extends the dialectics to “neutrosophy” – which became a new branch of philosophy. This new concept helps in generalizing the intuitionistic, paraconsistent, dialetheism, fuzzy logic to “neutrosophic logic” – which is the first logic that comprises paradoxes and distinguishes between relative and absolute truth. Similarly, the fuzzy set is generalized to “neutrosophic set”. Also, the classical and imprecise probabilities are generalized to “neutrosophic probability”.

Item Type:Book Chapter
Keywords:Neutrosophy, Dialectics, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability, Fuzzy Logic, Fuzzy Set, Imprecise Probability, Probability
Subjects:Philosophy > Logic
ID Code:1919
Deposited By: Smarandache, Florentin
Deposited On:24 Nov 2001
Last Modified:11 Mar 2011 08:54

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

[1] Ashbacher, Charles D., Exploring Some Specific Functional Mappings To Create Operators In The Neutrosophic Logic, mss., 1999.

[2] Association for Symbolic Logic, Urbana, IL, USA, New Book Anouncement of Interest to Logicians, http://www.aslonline.org/links/html.

[3] Atanassov, K., Burillo, P., Bustince, H., On the intuitionistic fuzzy relations, Notes on Intuitionistic Fuzzy Sets, Vol. 1 (1995), No. 2, 87 - 92.

[4] Atanassov, K., Bustince, H., Burillo, P., Mohedano, V., A method for inference in approximate reasoning for the one-dimensional case based on normal intuitionistic fuzzy sets, Proceedings of the VI IFSA World Congress, Sao Paulo, Brazil, July 1995, Vol. 1, 149-152.

[5] Atanassov, K., Stoyanova, D., Cartesian products over intuitionistic fuzzy sets, Methodology of Mathematical Modelling, Vol. 1, Sofia, 1990, 296-298.

[6] Atanassov, K., Stoyanova, D., Remarks on the intuitionistic fuzzy sets. II, Notes on Intuitionistic Fuzzy Sets, Vol. 1 (1995), No. 2, 85 - 86.

[7] Blunden, Andy, A New Logic: Neutrosophic Logic, Hegel by HyperText Page, http://werple.net.au/~andy/email.htm.

[8] Bogolubov, N. N., Logunov, A. A., Todorov, I. T., Introduction to Axiomatic Quantum Field Theory, Translated from Russian by Stephen A. Fulling and Ludmila G. Popova, W. A. Benjamin, Inc., Reading, Massachusetts, 1975.

[9] Bouvier, Alain, George, Michel, Dictionnaire des Mathématiques, sous la direction de François Le Lionnais, Presses Universitaire de France, Paris, 1979.

[10] Bridges, Douglas, Constructive Mathematics, Stanford Encyclopedia of Philosophy, editor Edward N. Zalta, http://plato.stanford.edu/mathematics-constructive/, 1997.

[11] Buhaescu, T., On an order relation between fuzzy numbers and fuzzy functions convexity, Itinerant seminar on functional equations, approximation and convexity, Cluj-Napoca, 1987, 85-90.

[12] Buhaescu, T., On quasicontinuity of fuzzy functions, Analele Universitatii din Galati, Matematica, Fizica, Mecanica Teoretica, Fascicula II, Anul VI (XI), 1988, 5-7.

[13] Buhaescu, T., On the convexity of intuitionistic fuzzy sets, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, 1988, 137-144.

[14] Buhaescu, T., Some observations on intuitionistic fuzzy rerelations, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, 1989, 111-118.

[15] Buhaescu, T., Intuitionistic fuzzy numbres, Analele Universitatii "Dunarea de Jos", Galati, Fascicula II, Anul VIII 1990, 47-53.

[16] Buhaescu, T., Nombres fuzzy intuitionistiques, Analele Universitatii Galati, fascicola II, 1990-1991, 1-2.

[17] Buhaescu, T., Interval valued real numbers, Sesiunea de comunicari stiintifice, Constanta, 6-8 iunie 1991, 34.

[18] Buhaescu, T., Convex structures on the fuzzy sets class, Fuzzy Systems & AI, Vol. 2, No. 3, 1993, 15-20.

[19] Buhaescu, T., Linear programming with intuitionistic fuzzy objective, Notes on Intuitionistic Fuzzy Sets, Vol. 1 (1995), No. 2, 130-131.

[20] Buhaescu, T., Linear programming with intuitionistic fuzzy objective, International Colloquy the Risk in Contemporary Economy, Galati, Romania, Nov. 10-11, 1995, 29-30.

[21] Burillo, Lopez P., Bustince Sola H., Entropy on intuitionistic fuzzy sets and on interval-values fuzzy sets, Fuzzy Sets and Systems, Vol. 78 (1996), No. 3, 305-316.

[22] Burillo, P., Bustince, H., Mohedano, V., Some definitions of intuitionistic fuzzy number. first properties, Proc. of the First Workshop on Fuzzy Based Expert Systems (D. Lakov, Ed.),

Sofia, Sept. 28-30, 1994, 53-55.

[23] Burillo, P., Bustince, H., Algebraic structures for intuitionistic fuzzy sets, Fifth Sci. Session of the ''Mathematical Foundation of Artificial Intelligence'' Seminar, Sofia, October 5, 1994, Preprint MRL-MFAIS-10-94, Sofia, 1994, 1-13.

[24] Burillo, P., Bustince, H., Isoentropic methods for construction of IVFS, Proc. of the 4-th International Workshop CIFT'94, Trento, June 1-3, 1994, 57-60.

[25] Burillo, P., Bustince, H., Numerical measurements of information on intuitionistic fuzzy sets and interval-valued fuzzy sets ( $\Phi$ -fuzzy), Fifth Sci. Session of the ''Mathematical Foundation of Artificial Intelligence'' Seminar, Sofia, October 5, 1994, Preprint MRL-MFAIS-10-94, Sofia, 1994, 14-26.

[26] Burillo, P., Bustince, H., Two operators on interval-valued intuitionistic fuzzy sets: Part I, Comptes rendus de l'Academie Bulgare des Sciences, Tome 47, 1994, No. 12, 9-12.

[27] Burillo, P., Bustince, H., Informational energy on intuitionistic fuzzy sets and on interval-values intuitionistic fuzzy sets ( $\Phi$ -fuzzy). Relationship between the measures of information, Proc. of the First Workshop on Fuzzy Based Expert Systems (D. Lakov, Ed.), Sofia, Sept. 28-30, 1994, 46-49.

[28] Burillo, P., Bustince, H., Numeros Intuicionistas Fuzzy, IV Congreso de la Asociacion Espanola de logica y Tecnologia Fuzzy, 1994, 97-103.

[29] Burillo, P., Bustince, H., Orderings in the referential set induced by an intuitionistic fuzzy relation, Notes on Intuitionistic Fuzzy Sets, Vol. 1 (1995), No. 2, 93-103.

[30] Burillo, P., Bustince, H., Two operators on interval-valued intuitionistic fuzzy sets: Part II, Comptes rendus de l'Academie Bulgare des Sciences, Tome 48, 1995, No. 1, 17-20.

[31] Burillo, P., Bustince, H., Metodos intuicionistas fuzzy, V Congreso de la Asociacion

Espanola de logica y Tecnologia Fuzzy, 1995, 147-153.

[32] Burillo, P., Bustince, H., Intuitionistic fuzzy relations. Part I, Mathware and Soft Computing, Vol. 2 (1995), No 1, 5-38.

[33] Burillo, P., Bustince, H., Intuitionistic fuzzy relations. Part II, Mathware and Soft Computing, Vol. 2 (1995), No 2, 117-148.

[34] Burillo, P., Bustince, H., Construction theorems for intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 84, 1996, No. 3, 271-281.

[35] Burnet, John, Greek Philosophy: Thales to Plato, St. Martin's Press, Inc., New York, 1962.

[36] Bustince, H., Numerical information measurements in intervalvalued intuitionistic fuzzy sets (IVIFS), Proc. of the First Workshop on Fuzzy Based Expert Systems (D. Lakov, Ed.), Sofia, Sept. 28-30, 1994, 50-52.

[37] Bustince, Sola H., Conjuntos Intuicionistas e Intervalo-valorados Difusos: Propie\-dades y Construccion. Relaciones Intuicionistas y Estructuras, Ph. D., Univ. Publica de Navarra, Pamplona, 1994.

[38] Bustince, H., Correlation of interval-valued intuitionistic fuzzy sets, Fifth Sci. Session of the ''Mathematical Foundation of Artificial Intelligence'' Seminar, Sofia, October 5, 1994, Preprint MRL-MFAIS-10-94, Sofia, 1994, 27-35.

[39] Bustince, H., Handling multicriteria fuzzy decision making problems based on intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, Vol. 1, No. 1, 1995, 42-47.

[40] Bustince, H., Burillo P., A theorem for constructing interval valued intuitionistic fuzzy sets from intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, Vol. 1, No. 1, 1995, 5-16.

[41] Bustince, H., Burillo, P., Antisymmetrical ituitionistic fuzzy relation - Order on the referential set induced by an intuitionistic fuzzy relation, BUSEFAL Vol. 62, 1995, 17-21.

[42] Bustince, H., Burillo, P., Correlation of interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 74 (1995), No.2, 237-244.

[43] Bustince, H., Burillo, P., Mohedano, V., A method for inference in approximate reasoning based on normal intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, Vol. 1, No. 1, 1995, 51-55.

[44] Bustince, H., Burillo, P., Vague sets are intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 79, 1996, No. 3, 403-405.

[45] Bustince, H., Mohedano, V., About the intuitionistic fuzzy set generators, Proceedings of the First International Conference on Intuitionistic Fuzzy Sets (J. Kacprzyk and K. Atanassov Eds.), Sofia, Oct 18-19, 1997; Notes on Intuitionistic Fuzzy Sets, Vol. 3 (1997), No. 4, 21-27.

[46] Bustince, H., Mohedano, V., About the complement in intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, Vol. 3 (1997), No. 1, 12-19.

[47] Dempster, A. P., Upper and Lower Probabilities Induced by a Multivalued Mapping, Annals of Mathematical Statistics, 38, 325-339, 1967.

[48] Dezert, J., Autonomous navigation with Uncertain Reference points using the PDAF, In Multitarget-Multisensor Tracking : Applications and Advances, Volume 2, Yaakov Bar-Shalom Editor, pp 271-324, 1992.

[49] Dezert, Jean, E-mails to the Author, 1999-2000.

[50] Dezert, Jean, On a Problem of Autonomous Navigation of an Engine Car (approximate title), Ph. D. thesis, ONERA, Paris, 1990.

[51] Dezert, J., Vers un nouveau concept de navigation autonome d'engin; Un lien entre la théorie de l'évidence et le filtrage à association probabiliste de données, Ph. D. Thesis, no 1393, University Paris 11, Orsay, France, Sept. 1990.

[52] Didero, Daniele, Dictionaries and Encyclopedias, Italy, http://lgxserver.uniba.it/lei/dionary/dizlink.htm.

[53] Dimitrov, D., Atanassov, K., Shannon, A., Bustince, H., Kim, S.-K., Intuitionistic fuzzy sets and economic theory, Proceedings of The Second Workshop on Fuzzy Based Expert Systems

FUBEST'96 (D. Lakov, Ed.), Sofia, Oct. 9-11, 1996, 98-102.

[54] Dinulescu-C>mpina, Gheorghe, The Intangible Absolute Truth, “Smarandache Notions Journal”, 142-143, 2000.

[55] Dubois, D., Prade, H., RJvision mise B jour, et action, http://www.irit.fr/ACTIVITES/RPDMP/RMF.html/.

[56] Dudau, Victor, A beter use of neutrosophic probability, Sci. Math Archives Topics, 8 July 1999, http://forum.swarthmore.edu/epigone/sci.math/genverqua.

[57] Dummett, M., Wang’s paradox, Synthese, 30, 301-324, 1975.

[58] Dunn, J. M., Intuitive Semantics for First Degree Entailment and Coupled Trees, Philosophical Studies, Vol. XXIX, pp. 149-68, 1976.

[59] Eksioglu, Kamil Murat, Imprecision, Uncertainty & Vagueness: a reply (from his Ph. D. Dissertation), 1999, http://www.dbai.tuwien.ac.at/marchives/fuzzy-mail99/0819.html.

[60] Fine, K., Vagueness, truth and logic, Synthese, 30, 265-300, 1975.

[61] Fisch, Max, and Turquette, Atwell, Pierce’s Triadic Logic, Transactions of the Charles S. Peirce Society, 11, 71-85, 1966.

[62] Gilbert, John, Institute for Logic at the University of Vienna, Austria, Abstract,

http://www.logic.univie.ac.at/cgi-bin/abstract/.

[63] Girard, Jean-Yves, Linear logic, Theoretical Computer Science, 50:1-102, 1987.

[64] Goldberg, Samuel, Probability / An Introduction, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1960.

[65] Goguen, J. A., The Logic of Inexact Concepts, Synthese, 19, 325-375, 1969.

[66] Grmela, Ales, E-mails to C. T. Le, August 1999.

[67] Guinnessy, Paul; Gilbert, John, Proceedings on the Neutrosophic Logic and Their Applications in Neural Networks, Computer Programming, and Quantum Physics, Institute of Physics, editors: Kenneth Holmlund, Mikko Karttunen, Ghenther Nowotny,

http://physicsweb.org/TIPTOP/FORUM/BOOKS/describebook.phtml?entry_id=116.

[68] HalldJn, S., The Logic of Nonsense, Uppsala Universitets Arsskrift, 1949.

[69] Hammer, Eric M., Pierce’s Logic, Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta, URL=http://plato.stanford.edu/entries/pierce-logic/, 1996.

[70] Heitkoetter, Joerg; David Beasley, David, The Hitch-Hiker’s Guide to Evolutionary Computing, Encore,

http://surf.de.uu.net/encore/, ftp://gnomics.udg.es/pub/encore/EC/FAQ/part2, 1993-1999.

[71] Hellerstein, N. S., DELTA, Α Paradox Logic, World Scientific, Singapore, New Jersey, London, Hong Kong, 1999.

[72] Hoffmann, Banesh, The strange Story of the Quantum, An account for the general reader of the growth of the ideas underlying our present atomic knowledge, Dover Publications, Inc., New York, 1959.

[73] Hogg, Robert V., Craig, Allen T., Introduction to Mathematical Statistics, Second edition, The Macmillan Company, New York, 1969.

[74] Howe, Denis, Neutrosophic Logic (or Smarandache Logic), On-Line Dictionary of Computing, http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?Smarandache+logic.

and FOLDOC Australian Mirror - Australia's Cultural Network, http://www.acn.net.au/cgi-bin/foldoc.cgi?Smarandache+logic,

http://www.acn.net.au/foldoc/contents/S.htm.

[75] Howe, Denis, Neutrosophic Probability, On-Line Dictionary of Computing, England,

http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?neutrosophic+probability.

[76] Howe, Denis, Neutrosophic Set, On-Line Dictionary of Computing, England,

http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?neutrosophic+set.

[77] Howe, Denis, Neutrosophic Statistics, On-Line Dictionary of Computing, England,

http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?neutrosophic+statistics.

[78] Howe, Denis, Neutrosophy, On-Line Dictionary of Computing,

http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?neutrosophic.

[79] Hyde, Dominic, Sorites Paradox, Stanford Encyclopedia of Philosophy, URL=http://plato.stanford.edu/entries/sorites-paradox/, edited by Edward N. Zalta, 1996.

[80] Illingworth, Valerie, The Penguin Dictionary of Physics, second edition, Penguin Books, 1991.

[81] Jasper, Paul, Abstract Service for Mathematical Logic, Institute for Logic at the University of Vienna, http://www.logic.univie.ac.at/cgi-bin/abstract/.

[82] Jasper, Paul; Le, C. T. (editors), ‘A Unifying Field In Logics. Neutrosophy: Neutrosophic Probability, Set, and Logic’ by Florentin Smarandache, book review, Institute of Physics, London, England, editors: Kenneth Holmlund, Mikko Karttunen,Ghenther Nowotny,

http://physicsweb.org/TIPTOP/FORUM/BOOKS/describebook.phtml?entry_id=117.

[83] Kasabov, N., Foundations of neural networks, fuzzy systems and knowledge engineering, MIT Press, 1996.

[84] Kathwaroon, Maggie, Society for Technical Communications, Montreal Links Page, Canada, http://www.stc-montreal.org/links.html.

[85] Kenny, A., Aquinas, Hill and Wang, Inc., New York, 1980.

[86] Klein, Felix, Vergleichende Betrachtungen hber neuere geometrische Forschungen, Mathematische Annalen, 43, 63-100, 1893.

[87] K`rner, S., The Philosophy of Mathematics, Hutchinson, London, 1960.

[88] Lambert, J. H., Neues Organon, Leipzig, 1764.

[89] Lambert, J. H., Philosophische Schriften, Vol. I & II, reprinted by Olms, 1985.

[90] Le, Charles T., Neutrosophic logic used in neural networks, CIO Communications, Inc., http://wellengaged.com/engaged/cio.cgi?c=connection&f=0&t=255.

[91] Le, Charles T. Le, Software for neutrosophic logical operators, Networking by Industry, Inc. Online, http://www.inc.com/bbs/show/4/935277052-999.

[92] Le, Charles T., The Smarandache Class of Paradoxes, in “Journal of Indian Academy of Mathematics”, Bombay, India, No. 18, 5355, 1996.

[93] Lin, T. Y., E-mails to C. T. Le, August 1999.

[94] Mackey, George W., Mathematical Foundations of Mechanics / A Lecture-Note Volume, The Benjamin/Cummings Publishing Company, Reading, Massachusetts, 1980.

[95] Mathematical Logic Around The World, University of Bonn, Germany, http://www.uni-bonn.de/logic/world.html.

[96] McNeil, Martin, F., Thro, Ellen, Fuzzy Logic / A Practical Approach, Foreword by Ronald R. Yager, Academic Press, 1994.

[97] Mehta, J. L., Martin Heidegger: The Way and the Vision, University of Hawaii Press, Honolulu, 1976.

[98] Mendenhall, William, Introduction to Probability and Statistics, Fourth edition, Duxbury Press, North Scltuate, Massachusetts, 1975.

[99] Mortensen, Chris, Inconsistent Mathematics, Stanford Encyclopedia of Philosophy, editor Edward N. Zalta, http://plato.stanford.edu/entries/mathematics-inconsistent/, 1996.

[100] Moschovakis, Joan, Intuitionistic Logic, Stanford Encyclopedia of Philosophy, editor Edward N. Zalta, http://plato.stanford.edu/contents.html#1.

[101] Moschovakis, Joan, E-mails to C. T. Le, August 1999.

[102] Narinyani, A., Indefinite sets - a new type of data for knowledge representation, Preprint 232, Computer Center of the USSR Academy of Sciences, Novosibirsk, 1980 (in Russian).

[103] Nobre, Farley Simon M., E-mails to M. Perez, August 1999.

[104] Perez, Minh, Neutrosophy  book review , Sci.Math Archives Topics, 8 July 1999,

http://forum.swarthmore.edu/epigone/sci.math/lelswoboi.

[105] Perez, M. L., New Books and Books Reviews, Institute of Physics, London, England, editors: Kenneth Holmlund, Mikko Karttunen,Ghenther Nowotny,

http://physicsweb.org/TIPTOP/FORUM/BOOKS/newbooks.phtml.

[106] Petrescu, M. I., Institute for Logic at the University of Vienna, Austria,

http://www.logic.univie.ac.at/cgi-bin/abstract/.

[107] Petrescu, M. I., Le, Charles T., Neutrosophic Logic, a generalization of the fuzzy logic, 7/30 July 1999,

http://forum.swarthmore.edu/epigone/sci.math/shelkelwhim.

[108] Peirce, C. S., Essays in the Philosophy of Science, The Liberal Arts Press, Inc., New York, 1957.

[109] Piwinger, Boris, Institute for Logic at the University of Vienna, Austria,

http://www.logic.univie.ac.at/cgi-bin/abstract/author.shtml.

[110] Pollett, Phil, The Probability Web / Miscellaneous Probability links, Australia,

http://www.maths.uq.oz.au/~pkp/probweb/misc.html.

[111] Priest, Graham; Tanaka, Koji, Paraconsistent Logic, Stanford Encyclopedia of Philosophy, editor Edward N. Zalta,

http://plato.stanford.edu/entries/logic-paraconsistent/.

[112] Priest, Graham, Dialetheism, Stanford Encyclopedia of Philosophy, editor Edward N. Zalta, http://plato.stanford.edu/entries/dialetheism/.

[113] Quine, W. V., What price bivalence?, Journal of Philosophy, 77, 90-95, 1981.

[114] Robinson, A., Non-Standard Analysis, Princeton University Press, Princeton, NJ, 1996.

[115] Routley, Richard and Val, The Semantics of First Degree Entailment, N^us, Vol. 6, 335-359, 1972.

[116] Rugina, Anghel N., Geldtypen und eldordnungen. Fundamente fhr eine echte allgemeine Geld und Wirtschaftstheorie, W. Kohhammer Verlag, Stuttgard, Germany, 1949.

[117] Rugina, Anghel N., What is the Alternative for the West, International Journal of Social Economics, Vol. 8, No. 2, 1981.

[118] Rugina, Anghel N., Principia Methologica 1: A Bridge from Economics to all Other Natural Sciences / Towards a Methodological Unification of all Sciences, MCB University Press Ltd., 1989.

[119] Rugina, Anghel N., Prolegomena to any Future Study in Economics, Finance and Other Social Sciences: The Road to a Third Revolution in Economic, Financial, Social, Ethical, Logical and Political Thinking, <International Journal of Social Economics>, Vol. 25, No. 5, 1998.

[120] Scedrov, Andre, Linear Logic and Computation: A Survey, http://www.cs.cmu.edu/~fp/mdorf93.pdf, 1999.

[121] Schiffel, Jeffrey; Petrescu, M. I., Neutrosophic logic, Sci.Math Archives Topics, 7-8 July 1999, http://forum.swarthmore.edu/epigone/sci.math/ploutoxshol.

[122] Shafer, Glenn, A Mathematical Theory of Evidence, Princeton University Press, NJ, 1976.

[123] Shafer, Glenn, The Combination of Evidence, International Journal of Intelligent Systems, Vol. I, 155-179, 1986.

[124] SIGART, ACM Organization, A generalization of the fuzzy logic, the neutrosophic logic, http://www.sigart.acm.org/Announcements/Other/Louise-99.Announcement.

[125] Smarandache, Florentin, &#913; Unifying Field in Logics: Neutrosophic Logic. / Neutrosophic Probability, Neutrosophic Set, Preliminary report, Western Section Meeting, Santa Barbara, CA, USA, Meeting # 951 of the American Mathematical Society, March 11-12, 2000, http://www.ams.org/amsmtgs/2064_presenters.html and http://www.ams.org/amsmtgs/2064_program_saturday.html.

[126] Smarandache, Florentin, Collected Papers, Vol. II, University of Kishinev Press, Kishinev, 1997.

[127] Smarandache, Florentin, Distihuri paradoxiste, Dorul, Norresundby, 1998.

[128] Smarandache, Florentin, Linguistic Paradoxists and Tautologies, Libertas Mathematica, University of Texas at Arlington, Vol. XIX, 143-154, 1999.

[129] Smarandache, Florentin, Neutrosophic Logic, A Generalization of the Fuzzy Logic,

http://www.gallup.unm.edu/~smarandache/NeutLog.txt.

[130] Smarandache, Florentin, Neutrosophic Probability, A Generalization of the Classical Probability, http://www.gallup.unm.edu/~smarandache/NeutProb.txt.

[131] Smarandache, Florentin, Neutrosophic Set, A Generalization of the Fuzzy Set,

http://www.gallup.unm.edu/~smarandache/NeutSet.txt.

[132] Smarandache, Florentin, Neutrosophy, A New Branch of Phylosophy,

http://www.gallup.unm.edu/~smarandache/NeutroSo.txt.

[133] Smarandache, Florentin, Neutrosophy: Neutrosophic Probability, Set, and Logic, American Research Press, Rehoboth, USA, 105p., 1998.

[134] "The Florentin Smarandache Papers" Special Collection, Archives of American Mathematics, Center for American History, SRH 2.109, University of Texas at Austin, TX 78713, USA.

[135] "The Florentin Smarandache Papers" Special Collection, Arizona State University, Hayden Library, Tempe, AZ 85287, USA.

[136] Sonnabend, Thomas, Mathematics for Elementary Teachers, Second Edition, Saunders College Publishing, 1997.

[137] Song, Feijun, E-mail to C. T. Le, August 1999.

[138] Stojmenovic, Ivan, editor, Many-Valued Logic, on-line journal, E-mails to C. T. Le, August 1999.

[139] Stoyanova, D., A variant of a cartesian product over intuitionistic fuzzy sets, Second Sci. Session of the ''Mathematical Foundation of Artificial Intelligence'' Seminar, Sofia, March 30, 1990, Prepr. IM-MFAIS-1-90, 43-45.

[140] Stoyanova, D., Algebraic structures of intuitionistic fuzzy sets, Third Sci. Session of the ''Mathematical Foundation of Artificial Intelligence'' Seminar, Sofia, June 12, 1990, Preprint

IM-MFAIS-2-90, Part 1, 19-21.

[141] Stoyanova, D., Algebraic structures of fuzzy sets, Third Sci. Session of the ''Mathematical Foundation of Artificial Intelligence'' Seminar, Sofia, June 12, 1990, Preprint IM-MFAIS-2-90, Part 1, 15-18.

[142] Stoyanova, D., Sets from ($\alpha,\beta$)—level generated by an intuitionistic fuzzy sets, Ninetieth Session of the Nat. Seminar of Informatics of the Union of Bulg. Mathematicians and Fourth Scientific Session of the ''Mathematical Foundation Artificial Intelligence'' Seminar, Sofia, Nov. 5, 1990, Preprint IM-MFAIS-5-90, Sofia, 1990, 40 - 42.

[143] Stoyanova, D., Atanassov K., Relations between operators, defined over intuitionistic fuzzy sets, Second Sci. Session of the ''Mathematical Foundation of Artificial Intelligence'' Seminar, Sofia, March 30, 1990, Prepr. IM-MFAIS-1-90, 46-49.

[144] Stoyanova, D., Compositions of intuitionistic fuzzy relations, BUSEFAL Vol. 54, 1993, 21-23.

[145] Stoyanova, D., More on Cartesian products over intuitionistic fuzzy sets, BUSEFAL Vol. 54, 1993, 9-13.

[146] Suber, Peter, Glossary of First-Order Logic, Philosophy Department, Earlham College, http://www.earlham.edu/~peters/courses/logsys/glossary.htm, 1999.

[147] Tabirca, Sabin, Some Recent Results Concerning the Smarandache Type Notions, conference held at the Department of Mathematics, Manchester University, England, 15 May 2000.

[148] TeSelle, E., Augustine the Theologian, Herder & Herder, Inc., 1970.

[149] Troelstra, Anne S., Lectures on Linear Logic, CSLI Lecture Notes 29, Center for the Study of Language and Information, Stanford, California, 1992.

[150] Tanaka, Koji, Philosophy Department, University of Queensland, Brisbane, Australia, E-mails to Minh Perez, USA, August 1999.

[151] Torretti, Roberto, Nineteenth Century Geometry, in Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta, URL=http://plato.stanford.edu/entries/geometry-19th/#1, 1999.

[152] Tye, M., Sorites Paradoxes and the Semantics of Vagueness, in Philosophical Perspectives: Logic and Language, edited by J. Tomberlin, Ridgeview, Atascadero, USA, 1994.

[153] Van Fraassen, B. C., The Scientific Image, Clarendon Press, 1980.

[154] Vinueza, Adam, Introduction to Logic / Philosophy 1440, University of Colorado at Boulder, Fall 1999, http://stripe.colorado.edu/~vinueza/1440/validforms.html.

[155] Weisstein, Eric W., CRC Concise Encyclopedia of Mathematics, CRC Press, Boca Raton, p. 1806, 1998.

[156] Wittgenstein, L., Tractatus Logico&#64979;Philosophicus, Humanitas Press, New York, 1961.

[157] Zadeh, Lotfi A., Fuzzy Logic and Approximate Reasoning, Synthese, 30, 407-428, 1975.

[158] Zadeh, Lotfi A., Reviews of Books (A Methematical Theory of Evidence. Glenn Shafer, Princeton University Press, Princeton, NJ, 1976), The AI Magazine, 81-83, 1984.

Metadata

Repository Staff Only: item control page