Martinez, Guillermina and Cangelosi, Angelo and Coventry, Kenny (2001) A Hybrid Neural Network and Virtual Reality System for Spatial Language Processing. [Conference Poster]
Full text available as:
PDF
165Kb |
Abstract
This paper describes a neural network model for the study of spatial language. It deals with both geometric and functional variables, which have been shown to play an important role in the comprehension of spatial prepositions. The network is integrated with a virtual reality interface for the direct manipulation of geometric and functional factors. The training uses experimental stimuli and data. Results show that the networks reach low training and generalization errors. Cluster analyses of hidden activation show that stimuli primarily group according to extra-geometrical variables.
Item Type: | Conference Poster |
---|---|
Subjects: | Computer Science > Artificial Intelligence Computer Science > Neural Nets Psychology > Psycholinguistics |
ID Code: | 2019 |
Deposited By: | Cangelosi, Professor Angelo |
Deposited On: | 11 Jan 2002 |
Last Modified: | 11 Mar 2011 08:54 |
References in Article
Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page