Turney, Peter D. (2002) Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. [Conference Paper]
Full text available as:
|
Postscript
205Kb | |
PDF
56Kb |
Abstract
This paper presents a simple unsupervised learning algorithm for classifying reviews as recommended (thumbs up) or not recommended (thumbs down). The classification of a review is predicted by the average semantic orientation of the phrases in the review that contain adjectives or adverbs. A phrase has a positive semantic orientation when it has good associations (e.g., "subtle nuances") and a negative semantic orientation when it has bad associations (e.g., "very cavalier"). In this paper, the semantic orientation of a phrase is calculated as the mutual information between the given phrase and the word "excellent" minus the mutual information between the given phrase and the word "poor". A review is classified as recommended if the average semantic orientation of its phrases is positive. The algorithm achieves an average accuracy of 74% when evaluated on 410 reviews from Epinions, sampled from four different domains (reviews of automobiles, banks, movies, and travel destinations). The accuracy ranges from 84% for automobile reviews to 66% for movie reviews.
Item Type: | Conference Paper |
---|---|
Subjects: | Computer Science > Artificial Intelligence Computer Science > Language Computer Science > Machine Learning Computer Science > Statistical Models |
ID Code: | 2321 |
Deposited By: | Turney, Peter |
Deposited On: | 15 Jul 2002 |
Last Modified: | 11 Mar 2011 08:54 |
References in Article
Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page