Turney, Peter (2002) Mining the Web for Lexical Knowledge to Improve Keyphrase Extraction: Learning from Labeled and Unlabeled Data. [Departmental Technical Report] (Unpublished)
This is the latest version of this eprint.
Full text available as:
|
PDF
267Kb |
Abstract
A journal article is often accompanied by a list of keyphrases, composed of about five to fifteen important words and phrases that capture the article’s main topics. Keyphrases are useful for a variety of purposes, including summarizing, indexing, labeling, categorizing, clustering, highlighting, browsing, and searching. The task of automatic keyphrase extraction is to select keyphrases from within the text of a given document. Automatic keyphrase extraction makes it feasible to generate keyphrases for the huge number of documents that do not have manually assigned keyphrases. Good performance on this task has been obtained by approaching it as a supervised learning problem. An input document is treated as a set of candidate phrases that must be classified as either keyphrases or non-keyphrases. To classify a candidate phrase as a keyphrase, the most important features (attributes) appear to be the frequency and location of the candidate phrase in the document. Recent work has demonstrated that it is also useful to know the frequency of the candidate phrase as a manually assigned keyphrase for other documents in the same domain as the given document (e.g., the domain of computer science). Unfortunately, this keyphrase-frequency feature is domain-specific (the learning process must be repeated for each new domain) and training-intensive (good performance requires a relatively large number of training documents in the given domain, with manually assigned keyphrases). The aim of the work described here is to remove these limitations. In this paper, I introduce new features that are conceptually related to keyphrase-frequency and I present experiments that show that the new features result in improved keyphrase extraction, although they are neither domain-specific nor training-intensive. The new features are generated by issuing queries to a Web search engine, based on the candidate phrases in the input document. The feature values are calculated from the number of hits for the queries (the number of matching Web pages). In essence, these new features are derived by mining lexical knowledge from a very large collection of unlabeled data, consisting of approximately 350 million Web pages without manually assigned keyphrases.
Item Type: | Departmental Technical Report |
---|---|
Keywords: | keyphrase extraction, unlabeled data, lexical knowledge, web mining, text mining |
Subjects: | Computer Science > Statistical Models Computer Science > Machine Learning Computer Science > Artificial Intelligence |
ID Code: | 2497 |
Deposited By: | Turney, Peter |
Deposited On: | 09 Oct 2002 |
Last Modified: | 11 Mar 2011 08:55 |
Available Versions of this Item
-
Mining the Web for Lexical Knowledge to Improve Keyphrase Extraction: Learning from Labeled and Unlabeled Data. (deposited 11 Nov 2001)
- Mining the Web for Lexical Knowledge to Improve Keyphrase Extraction: Learning from Labeled and Unlabeled Data. (deposited 09 Oct 2002) [Currently Displayed]
References in Article
Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page