Lemire, Daniel and Boley, Harold (2003) RACOFI: A Rule-Applying Collaborative Filtering System. [Conference Paper] (In Press)
Full text available as:
|
PDF
353Kb |
Abstract
In this paper we give an overview of the RACOFI (Rule-Applying Collaborative Filtering) multidimensional rating system and its related technologies. This will be exemplified with RACOFI Music, an implemented collaboration agent that assists on-line users in the rating and recommendation of audio (Learning) Objects. It lets users rate contemporary Canadian music in the five dimensions of impression, lyrics, music, originality, and production. The collaborative filtering algorithms STI Pearson, STIN2, and the Per Item Average algorithms are then employed together with RuleML-based rules to recommend music objects that best match user queries. RACOFI has been on-line since August 2003 at http://racofi.elg.ca. .
Item Type: | Conference Paper |
---|---|
Subjects: | Computer Science > Machine Learning Computer Science > Artificial Intelligence |
ID Code: | 3166 |
Deposited By: | Lemire, Daniel |
Deposited On: | 19 Sep 2003 |
Last Modified: | 11 Mar 2011 08:55 |
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page