Topology of large-scale engineering problem-solving networks

Braha, Dan and Bar-Yam, Yaneer (2004) Topology of large-scale engineering problem-solving networks.

Full text available as:



The last few years have led to a series of discoveries that uncovered statistical properties that are common to a variety of diverse real-world social, information, biological, and technological networks. The goal of the present paper is to investigate the statistical properties of networks of people engaged in distributed problem solving and discuss their significance. We show that problem-solving networks have properties ~sparseness, small world, scaling regimes! that are like those displayed by information, biological, and technological networks. More importantly, we demonstrate a previously unreported difference between the distribution of incoming and outgoing links of directed networks. Specifically, the incoming link distributions have sharp cutoffs that are substantially lower than those of the outgoing link distributions ~sometimes the outgoing cutoffs are not even present!. This asymmetry can be explained by considering the dynamical interactions that take place in distributed problem solving and may be related to differences between each actor’s capacity to process information provided by others and the actor’s capacity to transmit information over the network. We conjecture that the asymmetric link distribution is likely to hold for other human or nonhuman directed networks when nodes represent information processing and using elements.

Item Type:Other
Keywords:Cognitive Psychology, Social Psychology,Organizational Psychology,Bounded Rationality, Cooperative Problem Solving
Subjects:Philosophy > Decision Theory
Psychology > Applied Cognitive Psychology
Biology > Sociobiology
Biology > Behavioral Biology
Psychology > Cognitive Psychology
Biology > Theoretical Biology
Psychology > Social Psychology
Psychology > Behavioral Analysis
ID Code:3535
Deposited By: Braha, Professor Dan
Deposited On:07 Apr 2004
Last Modified:11 Mar 2011 08:55

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

[1] C. Alexander, Notes on the Synthesis of Form (Harvard University Press, Cambridge, MA, 1964).

[2] D. Braha and O. Maimon, A Mathematical Theory of Design: Foundations, Algorithms, and Applications (Kluwer Academic Publishers, Boston, MA, 1998).

[3] A. Yassine, and D. Braha, Concurrent Engineering: Research and Applications 11 (3), (2003).

[4] M. Klein, H. Sayama, P. Faratin and Y. Bar-Yam, Concurrent Engineering: Research and Applications, 11 (3), (2003).

[5] A. Yassine, N. Joglekar, D. Braha, S. Eppinger and D. Whitney, Research in Engineering Design (to be published).

[6] S. M. Osborne, MSc. Thesis, Massachusetts Institute of Technology, 1993.

[7] K. B. Clark, Management Science 35, 1247–1264 (1989).

[8] S. H. Strogatz, Nature 410, 268-276 (2001).

[9] R. Albert and Barabási, A.-L., Reviews of Modern Physics 74, 47-97 (2002)

[10] M. E. J. Newman, SIAM Review 45, 167-256 (2003).

[11] R. Albert, H. Jeong, and A.-L. Barabási, Nature 401, 130 (1999).

[12] M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comp. Comm. Rev. 29, 251-262 (1999).

[13] D. J. Watts, and S.H. Strogatz, Nature 393, 440-442 (1998).

[14] H. Jeong, B. Tombor, R. Albert, Z. N. Oltavi, and A.-L. Barabási, Nature 407, 651-654 (2000).

[15] H. Jeong, S. Mason, A.-L. Barabási, and Z. N. Oltvai, Nature 411, 41 (2001).

[16] J. M. Montoya and R. V. Solé, J. Theor. Bio. 214, 405-412 (2002).

[17] L. A. N. Amaral, A. Scala, M. Barthélémy and H. E. Stanley, Proc. Nat. Ac. Sci USA 97, 11149-11152 (2000).

[18] M. E. J. Newman, Proc. Nat. Ac. Sci USA 98, 404 (2001).

[19] M. E. J. Newman, Phys. Rev. E 64, 016131 (2001).

[20] M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).

[21] D. J. de S. Price, Science 149, 510-515 (1965).

[22] R. F. Cancho, C. Janssen, and R. V. Solé, Phys. Rev. E 63 (2001).

[23] S. Valverde, R. F. Cancho, and R. V. Solé, Europhys. Lett. 60, 512-517 (2002).

[24] R. Albert, H. Jeong, and A.-L. Barabási, Nature 406, 378-382 (2000).

[25] S.D. Eppinger, D.E. Whitney, R.P. Smith, and D.A. Gebala, Res. in Eng. Des. 6, 1-13 (1994).

[26] D.V. Steward, IEEE Trans. on Eng. Man. 28, 71-74 (1981).

[27] R. F. Cancho, and R. V. Solé, SFI Working Paper 01-11-068 (2001).

[28] H. A. Simon, The Sciences of the Artificial (MIT Press, Cambridge, MA, 1998).

[29] A.-L. Barabási, and R. Albert, Science 286, 509-512 (1999).


Repository Staff Only: item control page