Thinking Outside the Box II: The Origin, Implications and Applications of Gravity and Its Role in Consciousness

Hu, Huping and Wu, Maoxin (2006) Thinking Outside the Box II: The Origin, Implications and Applications of Gravity and Its Role in Consciousness. [Preprint]

Full text available as:



Although theories and speculations abound, there is no consensus on the origin or cause of gravity. Presumably, this status of affair is due to the lack of any experimental guidance. In this paper, we will discuss its ontological origin, implications and potential applications by thinking outside the mainstream notions of general relativity and quantum gravity. We argue that gravity originates from the primordial spin processes in non-spatial and non-temporal pre-spacetime, is the manifestation of quantum entanglement, and implies genuine instantaneous interconnectedness of all matters in the universe. That is, we advocate the principle of non-local action. To certain degree, our view is a reductionist expression of Newton’s instantaneous universal gravity and Mach’s Principle with important consequences. We also discuss the role of gravity in consciousness from this new perspective. Indeed, if spin is the primordial self-referential cause of everything, it should also be the cause of gravity.

Item Type:Preprint
Keywords:Gravity, Spin, Entanglement, Instantaneity, Interconnectedness, Consciousness
Subjects:Philosophy > Philosophy of Mind
ID Code:5259
Deposited By: Hu, Dr. Huping
Deposited On:20 Nov 2006
Last Modified:11 Mar 2011 08:56

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

1. Hu, H. & Wu, M. Spin-mediated consciousness theory. arXiv quant-ph/0208068 (2002); Med. Hypotheses 63: 633-646 (2004).

2. Hu, H. & Wu, M. Spin as primordial self-referential process driving quantum mechanics, spacetime dynamics and consciousness. Cogprints ID3544 (2003); NeuroQuantology 2:41-49 (2004).

3. Hu, H. & Wu, M. Thinking outside the box: the essence and implications of quantum entanglement. Cogprints ID4581 (2005); NeuroQuantology 4: 5-16 (2006).

4. Hu, H. & Wu, M. Photon induced non-local effect of general anesthetics on the brain. NeuroQuantology 4: 17-31 (2006); Cogprints ID4783 (2006).

5. Hu, H. & Wu. Nonlocal effects of chemical substances on the brain produced through quantum entanglement. Progress in Physics v3: 20-26 (2006).

6. Isaac Newton. The Principia: Mathematical Principles of Natural Philosophy. Translated by I.Bernard Cohen and Anne Whitman. Preceded by A Guide to Newton's Principia, by I.Bernard Cohen. University of California Press 1999 ISBN 0-520-08816-6 ISBN 0-520-08817-4 (Source: Wikipedia).

7. Mach, Ernst. The Science of Mechanics; a Critical and Historical Account of its Development. LaSalle, IL: Open Court Pub. Co. 1960 LCCN 60010179 (Source: Wikipedia)

8. Einstein, A. Die Feldgleichungun der Gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin: 844-847 (November, 1915).

9. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47: 777-780 (1935).

10. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimentally long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

11. Arnesen, M. C., Bose, S. & Vedral, V. Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901/1-4 (2001).

12. Dirac, P. A. M. The quantum theory of the electron. Proc. R. Soc. A 117: 610-624 (1928).

13. Penrose, R. A spinor approach to general relativity. Ann. Phys. 10: 171 (1960).

14. Penrose, R. Twistor algebra. J. Math. Phys., 8: 345 (1967).

15. Bohm, D. and Hiley, B. J. Generalisation of the twistor to Clifford algebras as a basis for geometry. Revista Brasilera de Fisica, Vol. Especial Os 70, anos de Mario Schonberg, pp. 1-26 (1984)

16. Smolin, L. Three Roads to Quantum Gravity (New York: Basic Books 2001).

17. Newman, T. E. On a classical, geometric origin of magnetic moments, spin-angular momentum and the Dirac gyromagnetic ratio. Phys. Rev., 65D:104005 (2002).

18. Sidharth, B. G. Issues and ramifications in quantized fractal space-time: an interface with quantum superstrings. Chaos Solitons Fractals, 12: 1449-1457 (2001).

19. Sidharth, B. G. Chaotic Universe (New York: Nova Science 2001)

20. Burinskii, A. Kerr’s gravity as a quantum gravity on the Compton level. arXiv gr-qc/0606035 (2006).

21. Makhlin, A. The Dirac field and the possible origin of gravity. arXiv hep-ph/0408105 (2004).

22. Hameroff, S. & Penrose, R. Conscious events as orchestrated spacetime selections. J. Conscious Stud., 3: 36-53 (1996).

23. Cahill, R. T. Process physics: from quantum foam to general relativity. arXiv gr-qc/0203015 (2002).

24. Bohm, D. and Hiley, B. J. The Undivided Universe (London: Routledge 1993).

25. Alder, S. Statistical dynamics of global unitary invariant matrix models as pre-quantum mechanics. arXiv hep-th/0206120 (2002).

26. Smolin, L. Could quantum mechanics be an approximation to another theory?

27. Sakharov, A.D. Vacuum quantum fluctuations in curved space and the theory of gravitation.

Sov.Phys.Dokl. 12:1040-1041 (1968).

28. Tegmark, M. The importance of quantum decoherence in brain processes. Phys. Rev., 61E: 4194 (2000).

29. Hagan, S, Hameroff, S. R. & Tuszynski, J. A. Quantum computation in brain microtubules: Decoherence and biological feasibility. Phys. Rev. E65, 061901 (2002).


Repository Staff Only: item control page