Cogprints

Brain Dynamics across levels of Organization

Werner, M.D. Gerhard (2006) Brain Dynamics across levels of Organization. [Preprint]

Full text available as:

[img]
Preview
PDF
56Kb

Abstract

After presenting evidence that the electrical activity recorded from the brain surface can reflect metastable state transitions of neuronal configurations at the mesoscopic level, I will suggest that their patterns may correspond to the distinctive spatio-temporal activity in the Dynamic Core (DC) and the Global Neuronal Workspace (GNW), respectively, in the models of the Edelman group on the one hand, and of Dehaene-Changeux, on the other. In both cases, the recursively reentrant activity flow in intra-cortical and cortical-subcortical neuron loops plays an essential and distinct role. Reasons will be given for viewing the temporal characteristics of this activity flow as signature of Self-Organized Criticality (SOC), notably in reference to the dynamics of neuronal avalanches. This point of view enables the use of statistical Physics approaches for exploring phase transitions, scaling and universality properties of DC and GNW, with relevance to the macroscopic electrical activity in EEG and EMG.

Item Type:Preprint
Additional Information:Some aspects of this paper were presebted at a meeting of a Special Interest Group of INNS, November 4, 2006, Arlington TX
Keywords:Metastability, Self-Organized Criticality, phase Transitions, Dynamic Core Hypothesis, Global Workspace, Non-Linear Dynamics, Operational Architectonics, Microstates
Subjects:Computer Science > Dynamical Systems
ID Code:5275
Deposited By: Werner, Gerhard
Deposited On:08 Dec 2006
Last Modified:11 Mar 2011 08:56

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

Bak,P., C. Tang, and K. Wiesenfeld, 1988. Self-organized criticality. Physical Review A 38:364-374.

Bak, P., 1996. How Nature works: the science of self-organized criticality. Copernicus, New York.

Basar, E., 1983. Toward a physical approach to integrative Physiology: brain dynamics and physical causality.

Amer.J.Physiol.245, R510-R533.

Basar, E., 2004. Macrodynamics of electrical activity in the whole brain. International Journal

of Bifurcation and Chaos 14:363-381.

Beggs, J. M., Plenz, D., 2003. Neuronal avalanches in neocortical circuits. J. Neurosci 23,11167-11177.

Beggs, J. M., Plenz. D., 2004. Neuronal avalanches are diverse and precise activity patterns that are stable for

many hours in cortical slice cultures. J. Neurosci. 24:5216-5229.

Binney, J., 1992, The theory of critical phenomena. Clarendon Press, Oxford.

Blanchard, P., Cessac, B., Kruger, T., 2000. What can one learn about self-organized criticality from

Dynamical system theory ? J. Statist. Phyics 98:375-404.

Breakspear, M., Stam, C.J., 2005.Dynamics of a neural system with a multiscale architecture.

Phil.Trans.R.Soc.B 360:1051-1074.

Changeux, J-P., 1983. L’homme neuronal. Fayard, Paris.

Changeux, J-P., Dehaene, S., 1989. Neuronal models of cognitive functions. Cognition 33:63-109.

Changeux,J-P., Michel,C.M., 2004. Mechanism of neural Integration at the Brain-scale Level pp.347-370,

In: Microcircuits, Grillner, S. and Graybiel, A.M., edits., The MIT Press, Cambridge MA.

Chialvo, D.R., 2004. Critical brain networks, Physica A 340:756-765.

Chialvo, D.R.,2006. The brain near the edge. 9th Granada Seminar on Computational Physics,

Granada, Spain.

Cosmelli, D., Lachaux, J-P. Thompson, E., 2006. Neurodynamics of consciousness. forthcoming in:

The Cambridge Handbook of Consciousness, Zelazo, P.D., Moscovitch, M., Thomson, E.,edits.

Dehaen, S., Changeux, J-P., Nadal, J-P., 1987. Neural networks that learn temporal sequences by selection. Proc

Natl Acad Sci USA 84:2727-2731.

Dehaene, S., Kerszberg, M., Changeux, J-P., 1998. A neuronal model of a global workspace in effortful cognitive

tasks. Proc Natl Acad Sci USA 95,14529-14534.

Dehaene, S., Naccache, L., 2001. Towards a cognitive neuroscience of consciousness: basic evidence and a

workspace framework. Cognition 79:1-37.

Dehaene, S, Sergent, C., Changeux, J-P., 2003. A neuronal network model linking subjective reports and

objective physiological data during conscious perception, Proc Natl Acad Sci USA 100:8520-8525.

Deahaene, S., Changeux, J-P., 2004, Neuronal mechanisms for access to consciousness. In M Gazzaniga ed. The

Cognitive Neurosciences , 3rd edit, Norton, N.Y., pp.1145-1157.

Dickman, Rp, Munoz, M. A., Vespignani, A., Zapperi, S.,.2002/2006. Paths to self-organized criticality.

arXiv:cond-mat/9910454 v2.

Edelman, G.M., 1989, The remembered present: a biological theory of consciousness. Basic Books, NY.

Edelman, G.M., 1993. Neural Darwinism: selection and reentrant signaling in higher brain function. Neuron 10:115-125.

Edelman, G.M., Tononi, G., 2001. Consciousness: how matter becomes Imagination. Penguin, London.

Eguiluz, V.M., Chialvo, D.R., Cecchi, G,, Baliki, M., Apkarian, A.V., 2005. Scale-free Brain functional networks.

Phys. Rev. Lett. 94:018102.

Fingelkurts, A .A., Fingelkurts, A. A., 2001, Operational architectonics of the human brain biopotential field:

Towards solving the mind-brain Problem. Mind and Brain 2:262-296.

Fingelkurts, A. A. , Fingelkurts, A. A.,2004. Making complexity simpler: multivariability and metastability

in the brain. Internat J.Neurosci 114:843-862.

Fingelkurts ,An.A., Fingelkurts Al.A., Kivisaari,R., Pekkonen,E, Ilmoniemi, R.J., Kahkonen, S.A., 2004. Local and remote functional connectivity of neocortex under the inhibition influence. NeuroImage 22: 1390-1406.

Fingelkurts, A. A., Fingelkurts, A. A., 2005. Mapping of the brain operational architectonics. pp 59-98, in: F J

Chen, ed , Focus on brain mapping research, Nova Science Publ.

http://www.bm-science.com/team/chap.3.pdf

Fingelkurts, A.A., Fingelkurts, A.A., 2006. Timing in cognition and EEG brain dynamics: discreteness versus

continuity. Cogn.Process 7:135-162.

Flyvbjerg, H., 1996., Simplest possible self-organized critical system, Phys Rev Lett 76:940-943.

Freeman, W.J., 2000. Neurodynamics. Springer, New York.

Freeman, W.J . 2003. The wave packet: an action potential for the 21st century. J.Integr. Neurosci. 2:3-30.

Freeman, W.J., 2005. A field-theoretic approach to understanding scale-free neocortical dynamics.

Biol.Cybern. 92:350-359.

Freeman, W.J., Holmes, M.D., 2005. Metastability, instability, and state transitions in neocortex. Neural

Networks 18:497-504.

Frigg, R., 2003. Self-organized criticality –what it is and what it isn’t. Stud. Hist. Phil. Sci 34:613-632.

Gisiger, T., 2001. Scale invariance in biology: coincidence or footprint of a universal mechanism ? Biol.

Rev. 76:161-209.

Grimmett, G., 1989. Percolation. Springer N.Y.

Jensen, H. J., 1998. Self-organized criticality, Cambridge University Press.

Kadanoff, L.P., Goetze, W., Hamblen, D., Hecht, R., Lewis, E.A.S., Palciauskas, V.V. , Rayl, M., Swift, L.,

1967. Static phenomena near critical points: theory and experiment. Rev. Modern Physics 39:395-431.

Kadanoff, L. P., Nagel, S. R., Wu, L., Zhou, S., 1989. Scaling and universality in avalanches. Physical Rev A

39:6524-6537.

Kadanoff, L.P., 1990. Scaling and universality in statistical physics. Physica A 163:1-14.

Kaplan, A.Y.A., Fingelkurts, A.A., Fingelkurts, A.A., Darkhovsky, B.S., 1997. Topological mapping of sharp

reorganization synchrony in multichannel EEG. Am J Electroneurodiagostic Technol. 37:265-275.

Koenig, T., Prichep, L., Lehmann D., 2002., Millisecond by millisecond, year by year: normative EEF microstates

and developmental stages. Neuroimage 16:41-48.

Koukou,M.,Lehmann,D.,1987. An Information processing perspective of psychophysiological measurements.

J.Psychophysiol. 1: 109-112.

Kozma, R., Puljic, M., Balister, P., Bollobas, B., Freeman, W.J., 2005, Phase transitions in the neuropercolation

model of neural populations with mixed local and non-local interactions. Biol. Cyber. 92:367-379.

Lehmann, d., 1984. EEF assessment of brain activity: spatial aspects, segmentation and imaging.

Int.J.Psychophysiol. 1:267-276.

Lehmann, D., Henggeler, B., Koukou,M.,Michel, C.M.,1993. Source localization of brain electric field frequency bands.

Cogn.Brain Res. 1:203-210.

Lehmann, D, Strik WK, Henggeler B, Koenig T, Koukkou, M., 1998., Brain electric microstates and momentary

conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts.

Internat J Psychophysiol 29:1-11

Lehmann, D., Faber, P.L., Gianotti, L.R.R., Kochi, K., Pascual-Marqui, R.D., 2006, Coherence and phase

Locking in the scalp EEG and between LORETA model sources, and microstates as putative

Mechanisms of brain temporo-spatial functional organization. J. Physiol.Paris 99:29-36.

Le vanQuyen, M., 2003. Disentangling the dynamic core: a research program for a neurodynamics at a large

scale. Biol Res 36:67-88.

Linkenkaer-Hansen, K., Nikouline, V.V., Palva, J.M, Ilmoniemi, R.J., 2001. Long –range temporal correlations

and Scaling behavior in human brain oscillations. J. Neurosci. 21: 1370-1377.

Llinas, R., Ribary, U., Contreras, D., Pedroarena, C., 1998. The neuronal basis of consciousness. Phil Trans R Soc

Lond B 353:1841-1849.

Lumer, E.D., Edelman, G.M., Tononi, G., 1997,. Neural dynamics in a model of the thalamocortical system. I.

Layers, loops, and the emergence of fast synchronous rhythms. Cerebral Cortex 7:207-227.

McComb, W.D., 2004. Renormalization Methods. Clarendon Press, Oxford

Michel, C.M., Seek, M., Landis, T.,1999. Spatiotemporal dynamics of human cognition. News Physiol. Sci. 14: 206-214.

Michel, C.M., Thus, G., Morand S. et al., Electric source imaging of human brain functions. Brain Res. Rev. 36:108-118.

Nunez, P., 1995. Neocortical Dynamics and human EEG Rhythms, Oxford University Press, N.Y.

Nunez, P., 2000. Toward a quantitative description of large-scale neocortical dynamic function and EEG. The

Behavioral and Brain Sciences 23:371-437.

Odor, G., 2004. Universality classes in nonequilibrium lattice systems. Revs Modern Physics 76:663-724.

Olam, Z., Feder, H. J. S., Christensen, K., 1992. Self-organized criticality in a continuous nonconservative

cellular automaton modeling earthquakes. Phys. Rev. Lett. 68:1244-1247.

Paczuski, M., Maslov, S., Bak, P., 1996. Avalanche dynamics in evolution, growth and depinning models.

Physical Rev. E 53:414-443.

Pietronero, L., Vespignani, A., Zapperi, S., 1994. Renormalization scheme for self-organized criticality in

sandpile models. Phys. Rev. Lett. 72:690-1693.

Plenz, D., Thiagarajan,T.C., 2006. The organizing principles of neuronal avalanches: cell assemblies in the cortex ?

TINS (in print).

Raichle, M.E., 2006. The Brain’s dark energy. Science 314:1249-1250.

Sigman M., Dehaene, S., 2005. Parsing a cognitive task: a characterization of the Mind’s bottleneck. PLoS 3(2): e37.

Sporns, O., Tononi, G., Edelman, G.M., 1991. Modeling perceptual grouping and figure-ground segregation by

means of active re-entrant connections. Proc Natl Acad Sci USA 88:129-133.

Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C., 2004. Organization, development and function of complex

brain networks. Trends in Cog. Sci. 8:418-425.

Stauffer, D., Aharony, A., 1991/94. Introduction to percolation theory. CRC Press Boca Raton.

Tononi, G., Sporns, O., Edelman, G.M., 1992. Reentry and the problem of integrating multiple cortical areas:

Simulation of dynamic integration in the visual system. Cerebral Cortex 2:310-335.

Vespignani, A.S., Zapperi, S., Pietronero, L., 1995. Renormalization approach to self-organized critical behavior

of sandpile models. Physical Rev E 51:1711-1751.

Vogels, T.P., Rajan, K., Abbott, L.F., 2005. Neural network Dynamics. Annu. Rev. Neurosci. 28:357-376.

Werner,G., 2006. Metastability, Criticality and Phase Transitions in Brain and its Models, BioSystems, in press.

Wilson, K. G., 1979. Problems in physics with many scales. Scientific American 241:149-157 (August).

Yeomans, J.M., 1992/2002. Statistical Mechanics of Phase Transitions. Clarendon Press, Oxford.

Metadata

Repository Staff Only: item control page