Turney, Peter D. (2007) Empirical Evaluation of Four Tensor Decomposition Algorithms. [Departmental Technical Report] (Unpublished)
Full text available as:
|
PDF
164Kb |
Abstract
Higher-order tensor decompositions are analogous to the familiar Singular Value Decomposition (SVD), but they transcend the limitations of matrices (second-order tensors). SVD is a powerful tool that has achieved impressive results in information retrieval, collaborative filtering, computational linguistics, computational vision, and other fields. However, SVD is limited to two-dimensional arrays of data (two modes), and many potential applications have three or more modes, which require higher-order tensor decompositions. This paper evaluates four algorithms for higher-order tensor decomposition: Higher-Order Singular Value Decomposition (HO-SVD), Higher-Order Orthogonal Iteration (HOOI), Slice Projection (SP), and Multislice Projection (MP). We measure the time (elapsed run time), space (RAM and disk space requirements), and fit (tensor reconstruction accuracy) of the four algorithms, under a variety of conditions. We find that standard implementations of HO-SVD and HOOI do not scale up to larger tensors, due to increasing RAM requirements. We recommend HOOI for tensors that are small enough for the available RAM and MP for larger tensors.
Item Type: | Departmental Technical Report |
---|---|
Keywords: | tensors, singular value decomposition, Tucker decomposition, tensor decomposition, latent semantic analysis |
Subjects: | Computer Science > Language Computer Science > Statistical Models Linguistics > Computational Linguistics Computer Science > Machine Learning Computer Science > Artificial Intelligence |
ID Code: | 5841 |
Deposited By: | Turney, Peter |
Deposited On: | 22 Nov 2007 21:41 |
Last Modified: | 11 Mar 2011 08:57 |
References in Article
Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page