Cogprints

Tomographic Image Reconstruction of Fan-Beam Projections with Equidistant Detectors using Partially Connected Neural Networks

Medeiros, Luciano Frontino de and Silva, Hamilton Pereira da and Ribeiro, Eduardo Parente (2003) Tomographic Image Reconstruction of Fan-Beam Projections with Equidistant Detectors using Partially Connected Neural Networks. [Journal (Paginated)]

Full text available as:

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution Non-commercial.

173Kb

Abstract

We present a neural network approach for tomographic imaging problem using interpolation methods and fan-beam projections. This approach uses a partially connected neural network especially assembled for solving tomographic reconstruction with no need of training. We extended the calculations to perform reconstruction with interpolation and to allow tomography of fan-beam geometry. The main goal is to aggregate speed while maintaining or improving the quality of the tomographic reconstruction process.

Item Type:Journal (Paginated)
Keywords:tomography, reconstruction, neural network, fan-beam, interpolation
Subjects:Computer Science > Neural Nets
Computer Science > Artificial Intelligence
ID Code:6085
Deposited By: Medeiros, MSc Luciano F
Deposited On:13 Jun 2008 00:08
Last Modified:11 Mar 2011 08:57

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

[1] M.T. Munley et al. An artificial neural network approach to quantitative single photon emission computed tomographic reconstruction with collimator, attenuation and scatter compensation. Med. Physics. 21 (12) (1994).

[2] J. P. Kerr and E. B. Bartlett. A statistical tailored neural network approach to tomographic image reconstruction. Med. Physics. 22(5) (1995).

[3] R. G. S. Rodrigues. Desenvolvimento e Aplicação de um Algoritmo de Reconstrução Tomográfica com Base em Redes

Neurais Artificiais. Doctorate thesis. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, SP (2000).

[4] H. Monma, Y. Chen, Z. Nakao. Computed Tomography base on a Self-organizing Neural Network, IEEE SMC '99

Conference Proceedings. (1999).

[5] L. F. Medeiros, H. P. da Silva and E. P. Ribeiro. Reconstrução de Imagens Tomográficas utilizando Redes Neurais Parcialmente Conectadas. Proceedings of the V Brazilian Conference of Neural Networks. Rio de Janeiro, RJ (2001).

[6] L. F. Medeiros. Reconstrução de Imagens Tomográficas com Redes Neurais Parcialmente Conectadas. Dissertação de

Mestrado. UFPR. Curitiba, PR (2001).

[7] A. Rosenfeld and A. Kak. Digital Picture Processing. Academic Press. San Diego (1982).

[8] L. F. Medeiros, H. P. da Silva and E. P. Ribeiro. Reconstrução de Imagens Tomográficas Geradas por Projeções Fan-Beam com Detectores Eqüidistantes usando Redes Neurais Parcialmente Conectadas. Proceedings of the VI Brazilian

Conference of Neural Networks. São Paulo, SP (2003).

[9] P. Williams, T. York. Hardware implementation of RAM-based neural networks for tomographic data processing. IEE

Proceedings of Computers and Digital Techniques, pp. 114-118, (1999).

[10] A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, pp.431-475 (1989).

[11] G. T. Herman. Image Reconstruction from Projections. Academic Press, pp.90-160 (1980).

[12] G. T. Herman., S. W. Rowland and M. M. Yau. A comparative study of the use of linear interpolation and modified cubic spline interpolation for image reconstruction. IEEE Transactions Nuclear Sciences, pp.2879-2894 (1973).

[13] S. Haykin. Neural Networks – A Comprehensive Foundation. MacmillanColl. Pub. Com. Inc. pp.1-41 (1994).

[14] A. Kak and M. Slaney. Principles of Computerized Imaging. IEEE Press. New York (1988).

Metadata

Repository Staff Only: item control page