Cogprints

Cyclooxygenase inhibition in ischemic brain injury.

Candelario-Jalil, Dr. Eduardo and Fiebich, Bernd L. (2008) Cyclooxygenase inhibition in ischemic brain injury. [Journal (Paginated)]

Full text available as:

[img]
Preview
PDF (Review article published in: Current Pharmaceutical Design 2008;14(14):1401-18.) - Accepted Version
207Kb

Abstract

Neuroinflammation is one of the key pathological events involved in the progression of brain damage caused by cerebral ischemia. Metabolism of arachidonic acid through cyclooxygenase (COX) enzymes is known to be actively involved in the neuroinflammatory events leading to neuronal death after ischemia. Two isoforms of COX, termed COX-1 and COX-2, have been identified. Unlike COX-1, COX-2 expression is dramatically induced by ischemia and appears to be an effector of tissue damage. This review article will focus specifically on the involvement of COX isozymes in brain ischemia. We will discuss issues related to the biochemistry and selective pharmacological inhibition of COX enzymes, and further refer to their expression in the brain under normal conditions and following excitotoxicity and ischemic cerebral injury. We will review present knowledge of the relative contribution of each COX isoform to the brain ischemic pathology, based on data from investigations utilizing selective COX-1/COX-2 inhibitors and genetic knockout mouse models. The mechanisms of neurotoxicity associated with increased COX activity after ischemia will also be examined. Finally, we will provide a critical evaluation of the therapeutic potential of COX inhibitors in cerebral ischemia and discuss new targets downstream of COX with potential neuroprotective ability.

Item Type:Journal (Paginated)
Keywords:cyclooxygenase-2, ischemia, stroke, cerebral ischemia, neuroinflammation, excitotoxicity
Subjects:Neuroscience > Neurochemistry
ID Code:6132
Deposited By: Candelario-Jalil, Dr Eduardo
Deposited On:13 Jul 2008 11:04
Last Modified:11 Mar 2011 08:57

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

References

1. Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2003; 2(1):43-53.

2. Truelsen T, Piechowski-Jozwiak B, Bonita R, Mathers C, Bogousslavsky J, Boysen G. Stroke incidence and prevalence in Europe: a review of available data. Eur J Neurol 2006; 13(6):581-598.

3. The Atlas of Heart Disease and Stroke. http://www.who.int/cardiovascular_diseases/resources/atlas/en/index.html. 2004.

Ref Type: Internet Communication

4. Paul SL, Srikanth VK, Thrift AG. The large and growing burden of stroke. Curr Drug Targets 2007; 8(7):786-793.

5. Bejot Y, Benatru I, Rouaud O, Fromont A, Besancenot JP, Moreau T et al. Epidemiology of stroke in Europe: geographic and environmental differences. J Neurol Sci 2007; 262(1-2):85-88.

6. Liu M, Wu B, Wang WZ, Lee LM, Zhang SH, Kong LZ. Stroke in China: epidemiology, prevention, and management strategies. Lancet Neurol 2007; 6(5):456-464.

7. Lavados PM, Hennis AJ, Fernandes JG, Medina MT, Legetic B, Hoppe A et al. Stroke epidemiology, prevention, and management strategies at a regional level: Latin America and the Caribbean. Lancet Neurol 2007; 6(4):362-372.

8. Payne KA, Huybrechts KF, Caro JJ, Craig Green TJ, Klittich WS. Long term cost-of-illness in stroke: an international review. Pharmacoeconomics 2002; 20(12):813-825.

9. Hankey GJ. Stroke: how large a public health problem, and how can the neurologist help? Arch Neurol 1999; 56(6):748-754.

10. Dirnagl U. Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab 2006; 26(12):1465-1478.

11. Lee JM, Grabb MC, Zipfel GJ, Choi DW. Brain tissue responses to ischemia. J Clin Invest 2000; 106(6):723-731.

12. Mitsios N, Gaffney J, Kumar P, Krupinski J, Kumar S, Slevin M. Pathophysiology of acute ischaemic stroke: an analysis of common signalling mechanisms and identification of new molecular targets. Pathobiology 2006; 73(4):159-175.

13. Hazell AS. Excitotoxic mechanisms in stroke: An update of concepts and treatment strategies. Neurochem Int 2007; 50(7-8):941-953.

14. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999; 22(9):391-397.

15. Dirnagl U. Inflammation in stroke: the good, the bad, and the unknown. Ernst Schering Res Found Workshop 2004;(47):87-99.

16. Muir KW, Tyrrell P, Sattar N, Warburton E. Inflammation and ischaemic stroke. Curr Opin Neurol 2007; 20(3):334-342.

17. Hurley SD, Olschowka JA, O'Banion MK. Cyclooxygenase inhibition as a strategy to ameliorate brain injury. J Neurotrauma 2002; 19(1):1-15.

18. Gilgun-Sherki Y, Melamed E, Offen D. Anti-inflammatory drugs in the treatment of neurodegenerative diseases: current state. Curr Pharm Des 2006; 12(27):3509-3519.

19. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000; 69:145-182.

20. Kulmacz RJ. Cellular regulation of prostaglandin H synthase catalysis. FEBS Lett 1998; 430(3):154-157.

21. Kulmacz RJ, van der Donk WA, Tsai AL. Comparison of the properties of prostaglandin H synthase-1 and -2. Prog Lipid Res 2003; 42(5):377-404.

22. van der Donk WA, Tsai AL, Kulmacz RJ. The cyclooxygenase reaction mechanism. Biochemistry 2002; 41(52):15451-15458.

23. Tsai A, Kulmacz RJ. Tyrosyl radicals in prostaglandin H synthase-1 and -2. Prostaglandins Other Lipid Mediat 2000; 62(3):231-254.

24. Marnett LJ, Rowlinson SW, Goodwin DC, Kalgutkar AS, Lanzo CA. Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. J Biol Chem 1999; 274(33):22903-22906.

25. Kurumbail RG, Kiefer JR, Marnett LJ. Cyclooxygenase enzymes: catalysis and inhibition. Curr Opin Struct Biol 2001; 11(6):752-760.

26. Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 1996; 271(52):33157-33160.

27. Wu G, Wei C, Kulmacz RJ, Osawa Y, Tsai AL. A mechanistic study of self-inactivation of the peroxidase activity in prostaglandin H synthase-1. J Biol Chem 1999; 274(14):9231-9237.

28. Callan OH, So OY, Swinney DC. The kinetic factors that determine the affinity and selectivity for slow binding inhibition of human prostaglandin H synthase 1 and 2 by indomethacin and flurbiprofen. J Biol Chem 1996; 271(7):3548-3554.

29. Kudo I, Murakami M. Prostaglandin E synthase, a terminal enzyme for prostaglandin E2 biosynthesis. J Biochem Mol Biol 2005; 38(6):633-638.

30. Bosetti F. Arachidonic acid metabolism in brain physiology and pathology: lessons from genetically altered mouse models. J Neurochem 2007; 102(3):577-586.

31. Murakami M, Kudo I. Prostaglandin E synthase: a novel drug target for inflammation and cancer. Curr Pharm Des 2006; 12(8):943-954.

32. Ueno N, Takegoshi Y, Kamei D, Kudo I, Murakami M. Coupling between cyclooxygenases and terminal prostanoid synthases. Biochem Biophys Res Commun 2005; 338(1):70-76.

33. Chandrasekharan NV, Simmons DL. The cyclooxygenases. Genome Biol 2004; 5(9):241.

34. Helliwell RJ, Adams LF, Mitchell MD. Prostaglandin synthases: recent developments and a novel hypothesis. Prostaglandins Leukot Essent Fatty Acids 2004; 70(2):101-113.

35. Sugimoto Y, Narumiya S. Prostaglandin E receptors. J Biol Chem 2007; 282(16):11613-11617.

36. Hull MA, Ko SC, Hawcroft G. Prostaglandin EP receptors: targets for treatment and prevention of colorectal cancer? Mol Cancer Ther 2004; 3(8):1031-1039.

37. Pierce KL, Regan JW. Prostanoid receptor heterogeneity through alternative mRNA splicing. Life Sci 1998; 62(17-18):1479-1483.

38. Regan JW. EP2 and EP4 prostanoid receptor signaling. Life Sci 2003; 74(2-3):143-153.

39. Hatae N, Sugimoto Y, Ichikawa A. Prostaglandin receptors: advances in the study of EP3 receptor signaling. J Biochem (Tokyo) 2002; 131(6):781-784.

40. Breyer RM, Bagdassarian CK, Myers SA, Breyer MD. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 2001; 41:661-690.

41. Coleman RA, Smith WL, Narumiya S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 1994; 46(2):205-229.

42. Liang X, Wu L, Hand T, Andreasson K. Prostaglandin D2 mediates neuronal protection via the DP1 receptor. J Neurochem 2005; 92(3):477-486.

43. Malki S, Nef S, Notarnicola C, Thevenet L, Gasca S, Mejean C et al. Prostaglandin D2 induces nuclear import of the sex-determining factor SOX9 via its cAMP-PKA phosphorylation. EMBO J 2005; 24(10):1798-1809.

44. Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 2004; 56(3):387-437.

45. Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci U S A 2002; 99(21):13926-13931.

46. Kis B, Snipes JA, Gaspar T, Lenzser G, Tulbert CD, Busija DW. Cloning of cyclooxygenase-1b (putative COX-3) in mouse. Inflamm Res 2006; 55(7):274-278.

47. Snipes JA, Kis B, Shelness GS, Hewett JA, Busija DW. Cloning and characterization of cyclooxygenase-1b (putative cyclooxygenase-3) in rat. J Pharmacol Exp Ther 2005; 313(2):668-676.

48. Garavito RM, Malkowski MG, DeWitt DL. The structures of prostaglandin endoperoxide H synthases-1 and -2. Prostaglandins Other Lipid Mediat 2002; 68-69:129-152.

49. Garavito RM, DeWitt DL. The cyclooxygenase isoforms: structural insights into the conversion of arachidonic acid to prostaglandins. Biochim Biophys Acta 1999; 1441(2-3):278-287.

50. O'Banion MK. Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit Rev Neurobiol 1999; 13(1):45-82.

51. Yermakova AV, Rollins J, Callahan LM, Rogers J, O'Banion MK. Cyclooxygenase-1 in human Alzheimer and control brain: quantitative analysis of expression by microglia and CA3 hippocampal neurons. J Neuropathol Exp Neurol 1999; 58(11):1135-1146.

52. Bauer MK, Lieb K, Schulze-Osthoff K, Berger M, Gebicke-Haerter PJ, Bauer J et al. Expression and regulation of cyclooxygenase-2 in rat microglia. Eur J Biochem 1997; 243(3):726-731.

53. Akundi RS, Candelario-Jalil E, Hess S, Hull M, Lieb K, Gebicke-Haerter PJ et al. Signal transduction pathways regulating cyclooxygenase-2 in lipopolysaccharide-activated primary rat microglia. Glia 2005; 51(3):199-208.

54. Minghetti L, Polazzi E, Nicolini A, Creminon C, Levi G. Up-regulation of cyclooxygenase-2 expression in cultured microglia by prostaglandin E2, cyclic AMP and non-steroidal anti-inflammatory drugs. Eur J Neurosci 1997; 9(5):934-940.

55. Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 2004; 63(9):901-910.

56. Levi G, Minghetti L, Aloisi F. Regulation of prostanoid synthesis in microglial cells and effects of prostaglandin E2 on microglial functions. Biochimie 1998; 80(11):899-904.

57. Wang T, Qin L, Liu B, Liu Y, Wilson B, Eling TE et al. Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neurochem 2004; 88(4):939-947.

58. Kyrkanides S, Moore AH, Olschowka JA, Daeschner JC, Williams JP, Hansen JT et al. Cyclooxygenase-2 modulates brain inflammation-related gene expression in central nervous system radiation injury. Brain Res Mol Brain Res 2002; 104(2):159-169.

59. Moore AH, Olschowka JA, O'Banion MK. Intraparenchymal administration of interleukin-1beta induces cyclooxygenase-2-mediated expression of membrane- and cytosolic-associated prostaglandin E synthases in mouse brain. J Neuroimmunol 2004; 148(1-2):32-40.

60. Minghetti L, Walsh DT, Levi G, Perry VH. In vivo expression of cyclooxygenase-2 in rat brain following intraparenchymal injection of bacterial endotoxin and inflammatory cytokines. J Neuropathol Exp Neurol 1999; 58(11):1184-1191.

61. Minghetti L, Levi G. Induction of prostanoid biosynthesis by bacterial lipopolysaccharide and isoproterenol in rat microglial cultures. J Neurochem 1995; 65(6):2690-2698.

62. Chen CC. Signal transduction pathways of inflammatory gene expressions and therapeutic implications. Curr Pharm Des 2006; 12(27):3497-3508.

63. Rouzer CA, Marnett LJ. Structural and functional differences between cyclooxygenases: fatty acid oxygenases with a critical role in cell signaling. Biochem Biophys Res Commun 2005; 338(1):34-44.

64. Kozak KR, Marnett LJ. Oxidative metabolism of endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 2002; 66(2-3):211-220.

65. Yu M, Ives D, Ramesha CS. Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. J Biol Chem 1997; 272(34):21181-21186.

66. Blobaum AL, Marnett LJ. Structural and functional basis of cyclooxygenase inhibition. J Med Chem 2007; 50(7):1425-1441.

67. Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 2006; 52(2):201-243.

68. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 1971; 231(25):232-235.

69. Ferreira SH, Moncada S, Vane JR. Indomethacin and aspirin abolish prostaglandin release from the spleen. Nat New Biol 1971; 231(25):237-239.

70. Smith WL, DeWitt DL. Biochemistry of prostaglandin endoperoxide H synthase-1 and synthase-2 and their differential susceptibility to nonsteroidal anti-inflammatory drugs. Semin Nephrol 1995; 15(3):179-194.

71. Smith WL, Meade EA, DeWitt DL. Interactions of PGH synthase isozymes-1 and -2 with NSAIDs. Ann N Y Acad Sci 1994; 744:50-57.

72. DeWitt DL. Cox-2-selective inhibitors: the new super aspirins. Mol Pharmacol 1999; 55(4):625-631.

73. Garavito RM, Mulichak AM. The structure of mammalian cyclooxygenases. Annu Rev Biophys Biomol Struct 2003; 32:183-206.

74. FitzGerald GA. COX-2 and beyond: Approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov 2003; 2(11):879-890.

75. Mardini IA, FitzGerald GA. Selective inhibitors of cyclooxygenase-2: a growing class of anti-inflammatory drugs. Mol Interv 2001; 1(1):30-38.

76. FitzGerald GA, Patrono C. The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med 2001; 345(6):433-442.

77. Deininger MH, Schluesener HJ. Cyclooxygenases-1 and -2 are differentially localized to microglia and endothelium in rat EAE and glioma. J Neuroimmunol 1999; 95(1-2):202-208.

78. Breder CD, Smith WL, Raz A, Masferrer J, Seibert K, Needleman P et al. Distribution and characterization of cyclooxygenase immunoreactivity in the ovine brain. J Comp Neurol 1992; 322(3):409-438.

79. Tsubokura S, Watanabe Y, Ehara H, Imamura K, Sugimoto O, Kagamiyama H et al. Localization of prostaglandin endoperoxide synthase in neurons and glia in monkey brain. Brain Res 1991; 543(1):15-24.

80. Kawasaki M, Yoshihara Y, Yamaji M, Watanabe Y. Expression of prostaglandin endoperoxide synthase in rat brain. Brain Res Mol Brain Res 1993; 19(1-2):39-46.

81. Li SR, Wu KK, Anggard E, Ferns G. Localization of prostaglandin G/H synthase gene expression in rat brain by in situ hybridization. Biol Signals 1993; 2(2):77-83.

82. Norton JL, Adamson SL, Bocking AD, Han VK. Prostaglandin-H synthase-1 (PGHS-1) gene is expressed in specific neurons of the brain of the late gestation ovine fetus. Brain Res Dev Brain Res 1996; 95(1):79-96.

83. Breder CD, Dewitt D, Kraig RP. Characterization of inducible cyclooxygenase in rat brain. J Comp Neurol 1995; 355(2):296-315.

84. Schwab JM, Beschorner R, Meyermann R, Gozalan F, Schluesener HJ. Persistent accumulation of cyclooxygenase-1-expressing microglial cells and macrophages and transient upregulation by endothelium in human brain injury. J Neurosurg 2002; 96(5):892-899.

85. Schwab JM, Nguyen TD, Postler E, Meyermann R, Schluesener HJ. Selective accumulation of cyclooxygenase-1-expressing microglial cells/macrophages in lesions of human focal cerebral ischemia. Acta Neuropathol (Berl) 2000; 99(6):609-614.

86. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci U S A 1994; 91(25):12013-12017.

87. Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 1993; 11(2):371-386.

88. Yermakova AV, O'Banion MK. Downregulation of neuronal cyclooxygenase-2 expression in end stage Alzheimer's disease. Neurobiol Aging 2001; 22(6):823-836.

89. Cao C, Matsumura K, Yamagata K, Watanabe Y. Induction by lipopolysaccharide of cyclooxygenase-2 mRNA in rat brain; its possible role in the febrile response. Brain Res 1995; 697(1-2):187-196.

90. Beiche F, Klein T, Nusing R, Neuhuber W, Goppelt-Struebe M. Localization of cyclooxygenase-2 and prostaglandin E2 receptor EP3 in the rat lumbar spinal cord. J Neuroimmunol 1998; 89(1-2):26-34.

91. Hirst WD, Young KA, Newton R, Allport VC, Marriott DR, Wilkin GP. Expression of COX-2 by normal and reactive astrocytes in the adult rat central nervous system. Mol Cell Neurosci 1999; 13(1):57-68.

92. Kaufmann WE, Worley PF, Pegg J, Bremer M, Isakson P. COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci U S A 1996; 93(6):2317-2321.

93. Adams J, Collaco-Moraes Y, de BJ. Cyclooxygenase-2 induction in cerebral cortex: an intracellular response to synaptic excitation. J Neurochem 1996; 66(1):6-13.

94. Chen J, Marsh T, Zhang JS, Graham SH. Expression of cyclo-oxygenase 2 in rat brain following kainate treatment. Neuroreport 1995; 6(2):245-248.

95. Marcheselli VL, Bazan NG. Sustained induction of prostaglandin endoperoxide synthase-2 by seizures in hippocampus. Inhibition by a platelet-activating factor antagonist. J Biol Chem 1996; 271(40):24794-24799.

96. Teather LA, Packard MG, Bazan NG. Post-training cyclooxygenase-2 (COX-2) inhibition impairs memory consolidation. Learn Mem 2002; 9(1):41-47.

97. Shimizu T, Wolfe LS. Arachidonic acid cascade and signal transduction. J Neurochem 1990; 55(1):1-15.

98. Chen C, Bazan NG. Lipid signaling: sleep, synaptic plasticity, and neuroprotection. Prostaglandins Other Lipid Mediat 2005; 77(1-4):65-76.

99. Rall JM, Mach SA, Dash PK. Intrahippocampal infusion of a cyclooxygenase-2 inhibitor attenuates memory acquisition in rats. Brain Res 2003; 968(2):273-276.

100. Sharifzadeh M, Naghdi N, Khosrovani S, Ostad SN, Sharifzadeh K, Roghani A. Post-training intrahippocampal infusion of the COX-2 inhibitor celecoxib impaired spatial memory retention in rats. Eur J Pharmacol 2005; 511(2-3):159-166.

101. Sharifzadeh M, Tavasoli M, Soodi M, Mohammadi-Eraghi S, Ghahremani MH, Roghani A. A time course analysis of cyclooxygenase-2 suggests a role in spatial memory retrieval in rats. Neurosci Res 2006; 54(3):171-179.

102. Chen C, Magee JC, Bazan NG. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J Neurophysiol 2002; 87(6):2851-2857.

103. Niwa K, Araki E, Morham SG, Ross ME, Iadecola C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J Neurosci 2000; 20(2):763-770.

104. Stefanovic B, Bosetti F, Silva AC. Modulatory role of cyclooxygenase-2 in cerebrovascular coupling. Neuroimage 2006; 32(1):23-32.

105. Wang H, Hitron IM, Iadecola C, Pickel VM. Synaptic and vascular associations of neurons containing cyclooxygenase-2 and nitric oxide synthase in rat somatosensory cortex. Cereb Cortex 2005; 15(8):1250-1260.

106. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 2004; 5(5):347-360.

107. Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 2006; 100(1):328-335.

108. Manev H, Uz T, Qu T. 5-Lipoxygenase and cyclooxygenase mRNA expression in rat hippocampus:early response to glutamate receptor activation by kainate. Exp Gerontol 2000; 35(9-10):1201-1209.

109. Sandhya TL, Ong WY, Horrocks LA, Farooqui AA. A light and electron microscopic study of cytoplasmic phospholipase A2 and cyclooxygenase-2 in the hippocampus after kainate lesions. Brain Res 1998; 788(1-2):223-231.

110. Tocco G, Freire-Moar J, Schreiber SS, Sakhi SH, Aisen PS, Pasinetti GM. Maturational regulation and regional induction of cyclooxygenase-2 in rat brain: implications for Alzheimer's disease. Exp Neurol 1997; 144(2):339-349.

111. Sanz O, Estrada A, Ferrer I, Planas AM. Differential cellular distribution and dynamics of HSP70, cyclooxygenase-2, and c-Fos in the rat brain after transient focal ischemia or kainic acid. Neuroscience 1997; 80(1):221-232.

112. Kawaguchi K, Hickey RW, Rose ME, Zhu L, Chen J, Graham SH. Cyclooxygenase-2 expression is induced in rat brain after kainate-induced seizures and promotes neuronal death in CA3 hippocampus. Brain Res 2005; 1050(1-2):130-137.

113. Yoshikawa K, Kita Y, Kishimoto K, Shimizu T. Profiling of eicosanoid production in the rat hippocampus during kainic acid-induced seizure: dual phase regulation and differential involvement of COX-1 and COX-2. J Biol Chem 2006; 281(21):14663-14669.

114. Ciceri P, Zhang Y, Shaffer AF, Leahy KM, Woerner MB, Smith WG et al. Pharmacology of celecoxib in rat brain after kainate administration. J Pharmacol Exp Ther 2002; 302(3):846-852.

115. Minghetti L, Greco A, Potenza RL, Pezzola A, Blum D, Bantubungi K et al. Effects of the adenosine A2A receptor antagonist SCH 58621 on cyclooxygenase-2 expression, glial activation, and brain-derived neurotrophic factor availability in a rat model of striatal neurodegeneration. J Neuropathol Exp Neurol 2007; 66(5):363-371.

116. Hewett SJ, Uliasz TF, Vidwans AS, Hewett JA. Cyclooxygenase-2 contributes to N-methyl-D-aspartate-mediated neuronal cell death in primary cortical cell culture. J Pharmacol Exp Ther 2000; 293(2):417-425.

117. Strauss KI, Marini AM. Cyclooxygenase-2 inhibition protects cultured cerebellar granule neurons from glutamate-mediated cell death. J Neurotrauma 2002; 19(5):627-638.

118. Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 1982; 11(5):491-498.

119. Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 1982; 239(1):57-69.

120. Kirino T. Delayed neuronal death. Neuropathology 2000; 20 Suppl:S95-S97.

121. Petito CK, Feldmann E, Pulsinelli WA, Plum F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 1987; 37(8):1281-1286.

122. Ohtsuki T, Kitagawa K, Yamagata K, Mandai K, Mabuchi T, Matsushita K et al. Induction of cyclooxygenase-2 mRNA in gerbil hippocampal neurons after transient forebrain ischemia. Brain Res 1996; 736(1-2):353-356.

123. Nakayama M, Uchimura K, Zhu RL, Nagayama T, Rose ME, Stetler RA et al. Cyclooxygenase-2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia. Proc Natl Acad Sci U S A 1998; 95(18):10954-10959.

124. Koistinaho J, Koponen S, Chan PH. Expression of cyclooxygenase-2 mRNA after global ischemia is regulated by AMPA receptors and glucocorticoids. Stroke 1999; 30(9):1900-1905.

125. Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, Alvarez D, Al-Dalain S, Martinez G et al. Assessment of the relative contribution of COX-1 and COX-2 isoforms to ischemia-induced oxidative damage and neurodegeneration following transient global cerebral ischemia. J Neurochem 2003; 86(3):545-555.

126. Choi JS, Kim HY, Chun MH, Chung JW, Lee MY. Differential regulation of cyclooxygenase-2 in the rat hippocampus after cerebral ischemia and ischemic tolerance. Neurosci Lett 2006; 393(2-3):231-236.

127. Sasaki T, Kitagawa K, Yamagata K, Takemiya T, Tanaka S, Omura-Matsuoka E et al. Amelioration of hippocampal neuronal damage after transient forebrain ischemia in cyclooxygenase-2-deficient mice. J Cereb Blood Flow Metab 2004; 24(1):107-113.

128. Matsuoka Y, Okazaki M, Zhao H, Asai S, Ishikawa K, Kitamura Y. Phosphorylation of c-Jun and its localization with heme oxygenase-1 and cyclooxygenase-2 in CA1 pyramidal neurons after transient forebrain ischemia. J Cereb Blood Flow Metab 1999; 19(11):1247-1255.

129. Colangelo V, Gordon WC, Mukherjee PK, Trivedi P, Ottino P. Downregulation of COX-2 and JNK expression after induction of ischemic tolerance in the gerbil brain. Brain Res 2004; 1016(2):195-200.

130. Walton M, Sirimanne E, Williams C, Gluckman PD, Keelan J, Mitchell MD et al. Prostaglandin H synthase-2 and cytosolic phospholipase A2 in the hypoxic-ischemic brain: role in neuronal death or survival? Brain Res Mol Brain Res 1997; 50(1-2):165-170.

131. Yamashita A, Kunimatsu T, Yamamoto T, Yoshida K. Hypothermic, but not normothermic, ischemia causes a drastic increase in cyclooxygenase-2 immunoreactive granule cells in rat dentate gyrus after 4 hours of ischemic reperfusion. Arch Histol Cytol 2007; 70(3):197-205.

132. Sacco RL, Chong JY, Prabhakaran S, Elkind MS. Experimental treatments for acute ischaemic stroke. Lancet 2007; 369(9558):331-341.

133. Planas AM, Soriano MA, Rodriguez-Farre E, Ferrer I. Induction of cyclooxygenase-2 mRNA and protein following transient focal ischemia in the rat brain. Neurosci Lett 1995; 200(3):187-190.

134. Collaco-Moraes Y, Aspey B, Harrison M, de Belleroche J. Cyclo-oxygenase-2 messenger RNA induction in focal cerebral ischemia. J Cereb Blood Flow Metab 1996; 16(6):1366-1372.

135. Nogawa S, Zhang F, Ross ME, Iadecola C. Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 1997; 17(8):2746-2755.

136. Miettinen S, Fusco FR, Yrjanheikki J, Keinanen R, Hirvonen T, Roivainen R et al. Spreading depression and focal brain ischemia induce cyclooxygenase-2 in cortical neurons through N-methyl-D-aspartic acid-receptors and phospholipase A2. Proc Natl Acad Sci U S A 1997; 94(12):6500-6505.

137. Busija DW, Thore C, Beasley T, Bari F. Induction of cyclooxygenase-2 following anoxic stress in piglet cerebral arteries. Microcirculation 1996; 3(4):379-386.

138. Zhao Y, Patzer A, Herdegen T, Gohlke P, Culman J. Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats. FASEB J 2006; 20(8):1162-1175.

139. Kinouchi H, Huang H, Arai S, Mizoi K, Yoshimoto T. Induction of cyclooxygenase-2 messenger RNA after transient and permanent middle cerebral artery occlusion in rats: comparison with c-fos messenger RNA by using in situ hybridization. J Neurosurg 1999; 91(6):1005-1012.

140. Yokota C, Kaji T, Kuge Y, Inoue H, Tamaki N, Minematsu K. Temporal and topographic profiles of cyclooxygenase-2 expression during 24 h of focal brain ishemia in rats. Neurosci Lett 2004; 357(3):219-222.

141. Yokota C, Kuge Y, Inoue H, Tagaya M, Kito G, Susumu T et al. Post-ischemic cyclooxygenase-2 expression is regulated by the extent of cerebral blood flow reduction in non-human primates. Neurosci Lett 2003; 341(1):37-40.

142. Koistinaho J, Chan PH. Spreading depression-induced cyclooxygenase-2 expression in the cortex. Neurochem Res 2000; 25(5):645-651.

143. Koistinaho J, Pasonen S, Yrjanheikki J, Chan PH. Spreading depression-induced gene expression is regulated by plasma glucose. Stroke 1999; 30(1):114-119.

144. Yokota C, Inoue H, Kuge Y, Abumiya T, Tagaya M, Hasegawa Y et al. Cyclooxygenase-2 expression associated with spreading depression in a primate model. J Cereb Blood Flow Metab 2003; 23(4):395-398.

145. Iadecola C, Niwa K, Nogawa S, Zhao X, Nagayama M, Araki E et al. Reduced susceptibility to ischemic brain injury and N-methyl-D-aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proc Natl Acad Sci U S A 2001; 98(3):1294-1299.

146. Kelsen J, Kjaer K, Chen G, Pedersen M, Rohl L, Frokiaer J et al. Parecoxib is neuroprotective in spontaneously hypertensive rats after transient middle cerebral artery occlusion: a divided treatment response? J Neuroinflammation 2006; 3:31.

147. Schwab JM, Schluesener HJ. Cyclooxygenases and central nervous system inflammation: conceptual neglect of cyclooxygenase 1. Arch Neurol 2003; 60(4):630-632.

148. Sairanen T, Ristimaki A, Karjalainen-Lindsberg ML, Paetau A, Kaste M, Lindsberg PJ. Cyclooxygenase-2 is induced globally in infarcted human brain. Ann Neurol 1998; 43(6):738-747.

149. Iadecola C, Forster C, Nogawa S, Clark HB, Ross ME. Cyclooxygenase-2 immunoreactivity in the human brain following cerebral ischemia. Acta Neuropathol (Berl) 1999; 98(1):9-14.

150. Maslinska D, Wozniak R, Kaliszek A, Modelska I. Expression of cyclooxygenase-2 in astrocytes of human brain after global ischemia. Folia Neuropathol 1999; 37(2):75-79.

151. Tomimoto H, Akiguchi I, Wakita H, Lin JX, Budka H. Cyclooxygenase-2 is induced in microglia during chronic cerebral ischemia in humans. Acta Neuropathol (Berl) 2000; 99(1):26-30.

152. Toti P, DE FC, Schurfeld K, Stumpo M, Bartolommei S, Lombardi A et al. Cyclooxygenase-2 immunoreactivity in the ischemic neonatal human brain. An autopsy study. J Submicrosc Cytol Pathol 2001; 33(3):245-249.

153. Planas AM, Soriano MA, Justicia C, Rodriguez-Farre E. Induction of cyclooxygenase-2 in the rat brain after a mild episode of focal ischemia without tissue inflammation or neural cell damage. Neurosci Lett 1999; 275(2):141-144.

154. Johshita H, Asano T, Hanamura T, Takakura K. Effect of indomethacin and a free radical scavenger on cerebral blood flow and edema after cerebral artery occlusion in cats. Stroke 1989; 20(6):788-794.

155. Buccellati C, Folco GC, Sala A, Scelsi R, Masoero E, Poggi P et al. Inhibition of prostanoid synthesis protects against neuronal damage induced by focal ischemia in rat brain. Neurosci Lett 1998; 257(3):123-126.

156. Phillis JW, Smith-Barbour M, Perkins LM, O'Regan MH. Indomethacin modulates ischemia-evoked release of glutamate and adenosine from the rat cerebral cortex. Brain Res 1994; 652(2):353-356.

157. Sasaki T, Nakagomi T, Kirino T, Tamura A, Noguchi M, Saito I et al. Indomethacin ameliorates ischemic neuronal damage in the gerbil hippocampal CA1 sector. Stroke 1988; 19(11):1399-1403.

158. Kimura S, Katayama Y, Terashi A. Effect of indomethacin on delayed neuronal death of hippocampal CA1 sector in gerbil under different levels of controlled cranial temperatures. Nippon Ika Daigaku Zasshi 1992; 59(4):335-343.

159. Kondo F, Kondo Y, Gomez-Vargas M, Ogawa N. Indomethacin inhibits delayed DNA fragmentation of hippocampal CA1 pyramidal neurons after transient forebrain ischemia in gerbils. Brain Res 1998; 791(1-2):352-356.

160. Kondo F, Kondo Y, Makino H, Ogawa N. Delayed neuronal death in hippocampal CA1 pyramidal neurons after forebrain ischemia in hyperglycemic gerbils: amelioration by indomethacin. Brain Res 2000; 853(1):93-98.

161. Miyamoto O, Tamae K, Kasai H, Hirakawa H, Hayashida Y, Konishi R et al. Suppression of hyperemia and DNA oxidation by indomethacin in cerebral ischemia. Eur J Pharmacol 2003; 459(2-3):179-186.

162. Petersen EN. Anti-ischaemic effects of indomethacin and ketamine on hippocampus neurones in Mongolian gerbils. Pharmacol Toxicol 1989; 65(4):299-301.

163. Deluga KS, Plotz FB, Betz AL. Effect of indomethacin on edema following single and repetitive cerebral ischemia in the gerbil. Stroke 1991; 22(10):1259-1264.

164. Iannotti F, Crockard A, Ladds G, Symon L. Are prostaglandins involved in experimental ischemic edema in gerbils? Stroke 1981; 12(3):301-306.

165. Nakagomi T, Sasaki T, Kirino T, Tamura A, Noguchi M, Saito I et al. Effect of cyclooxygenase and lipoxygenase inhibitors on delayed neuronal death in the gerbil hippocampus. Stroke 1989; 20(7):925-929.

166. Patel PM, Drummond JC, Sano T, Cole DJ, Kalkman CJ, Yaksh TL. Effect of ibuprofen on regional eicosanoid production and neuronal injury after forebrain ischemia in rats. Brain Res 1993; 614(1-2):315-324.

167. Park EM, Cho BP, Volpe BT, Cruz MO, Joh TH, Cho S. Ibuprofen protects ischemia-induced neuronal injury via up-regulating interleukin-1 receptor antagonist expression. Neuroscience 2005; 132(3):625-631.

168. Cole DJ, Patel PM, Reynolds L, Drummond JC, Marcantonio S. Temporary focal cerebral ischemia in spontaneously hypertensive rats: the effect of ibuprofen on infarct volume. J Pharmacol Exp Ther 1993; 266(3):1713-1717.

169. Antezana DF, Clatterbuck RE, Alkayed NJ, Murphy SJ, Anderson LG, Frazier J et al. High-dose ibuprofen for reduction of striatal infarcts during middle cerebral artery occlusion in rats. J Neurosurg 2003; 98(4):860-866.

170. Berger C, Xia F, Schabitz WR, Schwab S, Grau A. High-dose aspirin is neuroprotective in a rat focal ischemia model. Brain Res 2004; 998(2):237-242.

171. Berger C, Stauder A, Xia F, Sommer C, Schwab S. Neuroprotection and glutamate attenuation by acetylsalicylic acid in temporary but not in permanent cerebral ischemia. Exp Neurol 2008; 210(2):543-548.

172. Zheng Z, Schwab S, Grau A, Berger C. Neuroprotection by early and delayed treatment of acute stroke with high dose Aspirin. Brain Res 2007; 1186:275-280.

173. Yamamoto N, Yokota K, Yoshidomi M, Yamashita A, Oda M. Protective effect of KBT-3022, a new cyclooxygenase inhibitor, in cerebral hypoxia and ischemia. Jpn J Pharmacol 1995; 69(4):421-428.

174. Galvao RI, Diogenes JP, Maia GC, Filho EA, Vasconcelos SM, de Menezes DB et al. Tenoxicam exerts a neuroprotective action after cerebral ischemia in rats. Neurochem Res 2005; 30(1):39-46.

175. Li W, Wu S, Hickey RW, Rose ME, Chen J, Graham SH. Neuronal Cyclooxygenase-2 Activity and Prostaglandins PGE2, PGD2, and PGF2alpha Exacerbate Hypoxic Neuronal Injury in Neuron-enriched Primary Culture. Neurochem Res 2008; 33(3):490-499.

176. Sutherland G, Lesiuk H, Bose R, Sima AA. Effect of mannitol, nimodipine, and indomethacin singly or in combination on cerebral ischemia in rats. Stroke 1988; 19(5):571-578.

177. Institoris A, Farkas E, Berczi S, Sule Z, Bari F. Effects of cyclooxygenase (COX) inhibition on memory impairment and hippocampal damage in the early period of cerebral hypoperfusion in rats. Eur J Pharmacol 2007; 574(1):29-38.

178. Silasi G, Kolb B. Chronic inhibition of cyclooxygenase-2 induces dendritic hypertrophy and limited functional improvement following motor cortex stroke. Neuroscience 2007; 144(4):1160-1168.

179. Hara K, Kong DL, Sharp FR, Weinstein PR. Effect of selective inhibition of cyclooxygenase 2 on temporary focal cerebral ischemia in rats. Neurosci Lett 1998; 256(1):53-56.

180. Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, Leon OS, Fiebich BL. Wide therapeutic time window for nimesulide neuroprotection in a model of transient focal cerebral ischemia in the rat. Brain Res 2004; 1007(1-2):98-108.

181. Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, Leon OS, Fiebich BL. Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats. J Neurochem 2007; 100(4):1108-1120.

182. Sugimoto K, Iadecola C. Delayed effect of administration of COX-2 inhibitor in mice with acute cerebral ischemia. Brain Res 2003; 960(1-2):273-276.

183. Gendron TF, Brunette E, Mealing GA, Nguyen A, Tauskela JS, Morley P. Opposing effects of cyclooxygenase-2 selective inhibitors on oxygen-glucose deprivation-induced neurotoxicity. Eur J Pharmacol 2004; 493(1-3):45-55.

184. Rainsford KD. Current status of the therapeutic uses and actions of the preferential cyclo-oxygenase-2 NSAID, nimesulide. Inflammopharmacology 2006; 14(3-4):120-137.

185. Taniguchi Y, Yokoyama K, Inui K, Deguchi Y, Furukawa K, Noda K. Inhibition of brain cyclooxygenase-2 activity and the antipyretic action of nimesulide. Eur J Pharmacol 1997; 330(2-3):221-229.

186. Wakita H, Tomimoto H, Akiguchi I, Lin JX, Miyamoto K, Oka N. A cyclooxygenase-2 inhibitor attenuates white matter damage in chronic cerebral ischemia. Neuroreport 1999; 10(7):1461-1465.

187. Candelario-Jalil E, Alvarez D, Gonzalez-Falcon A, Garcia-Cabrera M, Martinez-Sanchez G, Merino N et al. Neuroprotective efficacy of nimesulide against hippocampal neuronal damage following transient forebrain ischemia. Eur J Pharmacol 2002; 453(2-3):189-195.

188. Candelario-Jalil E, Alvarez D, Merino N, Leon OS. Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res 2003; 47(2):245-253.

189. Al-Majed AA, Al-Yahya AA, Asiri Y, Al-Gonaiah MA, Mostafa AM. Nimesulide prevents oxidative stress damage following transient forebrain ischemia in the rat hippocampus. Res Commun Mol Pathol Pharmacol 2004; 115-116:49-62.

190. Candelario-Jalil E, Mhadu NH, Gonzalez-Falcon A, Garcia-Cabrera M, Munoz E, Leon OS et al. Effects of the cyclooxygenase-2 inhibitor nimesulide on cerebral infarction and neurological deficits induced by permanent middle cerebral artery occlusion in the rat. J Neuroinflammation 2005; 2(1):3.

191. Wang Y, Deng XL, Xiao XH, Yuan BX. A non-steroidal anti-inflammatory agent provides significant protection during focal ischemic stroke with decreased expression of matrix metalloproteinases. Curr Neurovasc Res 2007; 4(3):176-183.

192. Rosenberg GA, Navratil M, Barone F, Feuerstein G. Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab 1996; 16(3):360-366.

193. Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 1998; 29(10):2189-2195.

194. Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia 2002; 39(3):279-291.

195. Rosenberg GA, Mun-Bryce S. Matrix metalloproteinases in neuroinflammation and cerebral ischemia. Ernst Schering Res Found Workshop 2004;(47):1-16.

196. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 2007; 27(4):697-709.

197. Candelario-Jalil E, Alvarez D, Castaneda JM, Al-Dalain SM, Martinez-Sanchez G, Merino N et al. The highly selective cyclooxygenase-2 inhibitor DFU is neuroprotective when given several hours after transient cerebral ischemia in gerbils. Brain Res 2002; 927(2):212-215.

198. Govoni S, Masoero E, Favalli L, Rozza A, Scelsi R, Viappiani S et al. The Cycloxygenase-2 inhibitor SC58236 is neuroprotective in an in vivo model of focal ischemia in the rat. Neurosci Lett 2001; 303(2):91-94.

199. Nagayama M, Niwa K, Nagayama T, Ross ME, Iadecola C. The cyclooxygenase-2 inhibitor NS-398 ameliorates ischemic brain injury in wild-type mice but not in mice with deletion of the inducible nitric oxide synthase gene. J Cereb Blood Flow Metab 1999; 19(11):1213-1219.

200. Yang L, Sameshima H, Yamaguchi M, Ikenoue T. Expression of inducible nitric oxide synthase and cyclooxygenase-2 mRNA in brain damage induced by lipopolysaccharide and intermittent hypoxia-ischemia in neonatal rats. J Obstet Gynaecol Res 2005; 31(2):185-191.

201. Nogawa S, Forster C, Zhang F, Nagayama M, Ross ME, Iadecola C. Interaction between inducible nitric oxide synthase and cyclooxygenase-2 after cerebral ischemia. Proc Natl Acad Sci U S A 1998; 95(18):10966-10971.

202. Vidwans AS, Uliasz TF, Hewett JA, Hewett SJ. Differential modulation of prostaglandin H synthase-2 by nitric oxide-related species in intact cells. Biochemistry 2001; 40(38):11533-11542.

203. Dore S, Otsuka T, Mito T, Sugo N, Hand T, Wu L et al. Neuronal overexpression of cyclooxygenase-2 increases cerebral infarction. Ann Neurol 2003; 54(2):155-162.

204. Xiang Z, Thomas S, Pasinetti G. Increased Neuronal Injury in Transgenic Mice with Neuronal Overexpression of Human Cyclooxygenase-2 is reversed by Hypothermia and Rofecoxib Treatment. Curr Neurovasc Res 2007; 4(4):274-279.

205. Niwa K, Haensel C, Ross ME, Iadecola C. Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ Res 2001; 88(6):600-608.

206. Iadecola C, Sugimoto K, Niwa K, Kazama K, Ross ME. Increased susceptibility to ischemic brain injury in cyclooxygenase-1-deficient mice. J Cereb Blood Flow Metab 2001; 21(12):1436-1441.

207. Cheung RT, Pei Z, Feng ZH, Zou LY. Cyclooxygenase-1 gene knockout does not alter middle cerebral artery occlusion in a mouse stroke model. Neurosci Lett 2002; 330(1):57-60.

208. Zou LY, Cheung RT, Liu S, Li G, Huang L. Melatonin reduces infarction volume in a photothrombotic stroke model in the wild-type but not cyclooxygenase-1-gene knockout mice. J Pineal Res 2006; 41(2):150-156.

209. Lin H, Lin TN, Cheung WM, Nian GM, Tseng PH, Chen SF et al. Cyclooxygenase-1 and bicistronic cyclooxygenase-1/prostacyclin synthase gene transfer protect against ischemic cerebral infarction. Circulation 2002; 105(16):1962-1969.

210. Manabe Y, Anrather J, Kawano T, Niwa K, Zhou P, Ross ME et al. Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Ann Neurol 2004; 55(5):668-675.

211. Hewett SJ, Silakova JM, Hewett JA. Oral treatment with rofecoxib reduces hippocampal excitotoxic neurodegeneration. J Pharmacol Exp Ther 2006; 319(3):1219-1224.

212. Silakova JM, Hewett JA, Hewett SJ. Naproxen reduces excitotoxic neurodegeneration in vivo with an extended therapeutic window. J Pharmacol Exp Ther 2004; 309(3):1060-1066.

213. Salzberg-Brenhouse HC, Chen EY, Emerich DF, Baldwin S, Hogeland K, Ranelli S et al. Inhibitors of cyclooxygenase-2, but not cyclooxygenase-1 provide structural and functional protection against quinolinic acid-induced neurodegeneration. J Pharmacol Exp Ther 2003; 306(1):218-228.

214. Scali C, Prosperi C, Vannucchi MG, Pepeu G, Casamenti F. Brain inflammatory reaction in an animal model of neuronal degeneration and its modulation by an anti-inflammatory drug: implication in Alzheimer's disease. Eur J Neurosci 2000; 12(6):1900-1912.

215. Scali C, Giovannini MG, Prosperi C, Bellucci A, Pepeu G, Casamenti F. The selective cyclooxygenase-2 inhibitor rofecoxib suppresses brain inflammation and protects cholinergic neurons from excitotoxic degeneration in vivo. Neuroscience 2003; 117(4):909-919.

216. Carlson NG. Neuroprotection of cultured cortical neurons mediated by the cyclooxygenase-2 inhibitor APHS can be reversed by a prostanoid. J Neurosci Res 2003; 71(1):79-88.

217. Kim EJ, Lee JE, Kwon KJ, Lee SH, Moon CH, Baik EJ. Differential roles of cyclooxygenase isoforms after kainic acid-induced prostaglandin E(2) production and neurodegeneration in cortical and hippocampal cell cultures. Brain Res 2001; 908(1):1-9.

218. Baik EJ, Kim EJ, Lee SH, Moon C. Cyclooxygenase-2 selective inhibitors aggravate kainic acid induced seizure and neuronal cell death in the hippocampus. Brain Res 1999; 843(1-2):118-129.

219. Toscano CD, Ueda Y, Tomita YA, Vicini S, Bosetti F. Altered GABAergic neurotransmission is associated with increased kainate-induced seizure in prostaglandin-endoperoxide synthase-2 deficient mice. Brain Res Bull 2008; 75(5):598-609.

220. Kelley KA, Ho L, Winger D, Freire-Moar J, Borelli CB, Aisen PS et al. Potentiation of excitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase-2. Am J Pathol 1999; 155(3):995-1004.

221. Kunz T, Oliw EH. Nimesulide aggravates kainic acid-induced seizures in the rat. Pharmacol Toxicol 2001; 88(5):271-276.

222. Gobbo OL, O'Mara SM. Post-treatment, but not pre-treatment, with the selective cyclooxygenase-2 inhibitor celecoxib markedly enhances functional recovery from kainic acid-induced neurodegeneration. Neuroscience 2004; 125(2):317-327.

223. Kunz T, Oliw EH. The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus. Eur J Neurosci 2001; 13(3):569-575.

224. Takemiya T, Matsumura K, Yamagata K. Roles of prostaglandin synthesis in excitotoxic brain diseases. Neurochem Int 2007; 51(2-4):112-120.

225. Takemiya T, Maehara M, Matsumura K, Yasuda S, Sugiura H, Yamagata K. Prostaglandin E2 produced by late induced COX-2 stimulates hippocampal neuron loss after seizure in the CA3 region. Neurosci Res 2006; 56(1):103-110.

226. Chan PH. Role of oxidants in ischemic brain damage. Stroke 1996; 27(6):1124-1129.

227. Kontos HA. Oxygen radicals in cerebral ischemia: the 2001 Willis lecture. Stroke 2001; 32(11):2712-2716.

228. Christophe M, Nicolas S. Mitochondria: a target for neuroprotective interventions in cerebral ischemia-reperfusion. Curr Pharm Des 2006; 12(6):739-757.

229. Hemler ME, Lands WE. Evidence for a peroxide-initiated free radical mechanism of prostaglandin biosynthesis. J Biol Chem 1980; 255(13):6253-6261.

230. Vanderhoek JY, Lands WE. The inhibition of the fatty acid oxygenase of sheep vesicular gland by antioxidants. Biochim Biophys Acta 1973; 296(2):382-385.

231. Tyurin VA, Tyurina YY, Borisenko GG, Sokolova TV, Ritov VB, Quinn PJ et al. Oxidative stress following traumatic brain injury in rats: quantitation of biomarkers and detection of free radical intermediates. J Neurochem 2000; 75(5):2178-2189.

232. Jiang J, Borisenko GG, Osipov A, Martin I, Chen R, Shvedova AA et al. Arachidonic acid-induced carbon-centered radicals and phospholipid peroxidation in cyclo-oxygenase-2-transfected PC12 cells. J Neurochem 2004; 90(5):1036-1049.

233. Kontos HA. Oxygen radicals from arachidonate metabolism in abnormal vascular responses. Am Rev Respir Dis 1987; 136(2):474-477.

234. Im JY, Kim D, Paik SG, Han PL. Cyclooxygenase-2-dependent neuronal death proceeds via superoxide anion generation. Free Radic Biol Med 2006; 41(6):960-972.

235. Candelario-Jalil E, Ajamieh HH, Sam S, Martinez G, Leon Fernandez OS. Nimesulide limits kainate-induced oxidative damage in the rat hippocampus. Eur J Pharmacol 2000; 390(3):295-298.

236. Morrow JD. The isoprostanes - unique products of arachidonate peroxidation: their role as mediators of oxidant stress. Curr Pharm Des 2006; 12(8):895-902.

237. Pepicelli O, Fedele E, Bonanno G, Raiteri M, Ajmone-Cat MA, Greco A et al. In vivo activation of N-methyl-D-aspartate receptors in the rat hippocampus increases prostaglandin E(2) extracellular levels and triggers lipid peroxidation through cyclooxygenase-mediated mechanisms. J Neurochem 2002; 81(5):1028-1034.

238. Pepicelli O, Fedele E, Berardi M, Raiteri M, Levi G, Greco A et al. Cyclo-oxygenase-1 and -2 differently contribute to prostaglandin E2 synthesis and lipid peroxidation after in vivo activation of N-methyl-D-aspartate receptors in rat hippocampus. J Neurochem 2005; 93(6):1561-1567.

239. Candelario-Jalil E, Akundi RS, Bhatia HS, Lieb K, Appel K, Munoz E et al. Ascorbic acid enhances the inhibitory effect of aspirin on neuronal cyclooxygenase-2-mediated prostaglandin E(2) production. J Neuroimmunol 2006; 174(1-2):39-51.

240. Candelario-Jalil E, Taheri S, Yang Y, Sood R, Grossetete M, Estrada EY et al. Cyclooxygenase inhibition limits blood-brain barrier disruption following intracerebral injection of tumor necrosis factor-alpha in the rat. J Pharmacol Exp Ther 2007; 323(2):488-498.

241. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007; 8(1):57-69.

242. Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 2005; 76(2):77-98.

243. Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 2005; 18(3):315-321.

244. Minghetti L, Levi G. Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol 1998; 54(1):99-125.

245. Wang JY, Wen LL, Huang YN, Chen YT, Ku MC. Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des 2006; 12(27):3521-3533.

246. Candelario-Jalil E, de Oliveira AC, Graf S, Bhatia HS, Hull M, Munoz E et al. Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J Neuroinflammation 2007; 4(1):25.

247. Widmer R, Engels M, Voss P, Grune T. Postanoxic damage of microglial cells is mediated by xanthine oxidase and cyclooxygenase. Free Radic Res 2007; 41(2):145-152.

248. Hoozemans JJ, Veerhuis R, Janssen I, van Elk EJ, Rozemuller AJ, Eikelenboom P. The role of cyclo-oxygenase 1 and 2 activity in prostaglandin E(2) secretion by cultured human adult microglia: implications for Alzheimer's disease. Brain Res 2002; 951(2):218-226.

249. Choi SH, Langenbach R, Bosetti F. Genetic deletion or pharmacological inhibition of cyclooxygenase-1 attenuate lipopolysaccharide-induced inflammatory response and brain injury. FASEB J 2008; (in press).

250. Kunz A, Anrather J, Zhou P, Orio M, Iadecola C. Cyclooxygenase-2 does not contribute to postischemic production of reactive oxygen species. J Cereb Blood Flow Metab 2007; 27(3):545-551.

251. Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vasquez-Vivar J et al. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 2003; 34(11):1359-1368.

252. Zhao H, Joseph J, Fales HM, Sokoloski EA, Levine RL, Vasquez-Vivar J et al. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc Natl Acad Sci U S A 2005; 102(16):5727-5732.

253. Budd SL, Castilho RF, Nicholls DG. Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells. FEBS Lett 1997; 415(1):21-24.

254. Lee J, Kosaras B, Aleyasin H, Han JA, Park DS, Ratan RR et al. Role of cyclooxygenase-2 induction by transcription factor Sp1 and Sp3 in neuronal oxidative and DNA damage response. FASEB J 2006; 20(13):2375-2377.

255. Rockwell P, Martinez J, Papa L, Gomes E. Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium. Cell Signal 2004; 16(3):343-353.

256. Li L, Prabhakaran K, Shou Y, Borowitz JL, Isom GE. Oxidative stress and cyclooxygenase-2 induction mediate cyanide-induced apoptosis of cortical cells. Toxicol Appl Pharmacol 2002; 185(1):55-63.

257. Kawano T, Anrather J, Zhou P, Park L, Wang G, Frys KA et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 2006; 12(2):225-229.

258. Ahmad AS, Saleem S, Ahmad M, Dore S. Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicol Sci 2006; 89(1):265-270.

259. Ahmad M, Ahmad AS, Zhuang H, Maruyama T, Narumiya S, Dore S. Stimulation of prostaglandin E2-EP3 receptors exacerbates stroke and excitotoxic injury. J Neuroimmunol 2007; 184(1-2):172-179.

260. Takadera T, Yumoto H, Tozuka Y, Ohyashiki T. Prostaglandin E(2) induces caspase-dependent apoptosis in rat cortical cells. Neurosci Lett 2002; 317(2):61-64.

261. Takadera T, Shiraishi Y, Ohyashiki T. Prostaglandin E2 induced caspase-dependent apoptosis possibly through activation of EP2 receptors in cultured hippocampal neurons. Neurochem Int 2004; 45(5):713-719.

262. Takadera T, Ohyashiki T. Prostaglandin E2 deteriorates N-methyl-D-aspartate receptor-mediated cytotoxicity possibly by activating EP2 receptors in cultured cortical neurons. Life Sci 2006; 78(16):1878-1883.

263. Takadera T, Ohyashiki T. Prevention of rat cortical neurons from prostaglandin E2-induced apoptosis by glycogen synthase kinase-3 inhibitors. Neurosci Lett 2006; 400(1-2):105-109.

264. Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 1998; 391(6664):281-285.

265. Cazevieille C, Muller A, Meynier F, Dutrait N, Bonne C. Protection by prostaglandins from glutamate toxicity in cortical neurons. Neurochem Int 1994; 24(4):395-398.

266. Akaike A, Kaneko S, Tamura Y, Nakata N, Shiomi H, Ushikubi F et al. Prostaglandin E2 protects cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Res 1994; 663(2):237-243.

267. McCullough L, Wu L, Haughey N, Liang X, Hand T, Wang Q et al. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J Neurosci 2004; 24(1):257-268.

268. Ahmad AS, Ahmad M, de Brum-Fernandes AJ, Dore S. Prostaglandin EP4 receptor agonist protects against acute neurotoxicity. Brain Res 2005; 1066(1-2):71-77.

269. Ahmad AS, Zhuang H, Echeverria V, Dore S. Stimulation of prostaglandin EP2 receptors prevents NMDA-induced excitotoxicity. J Neurotrauma 2006; 23(12):1895-1903.

270. Liu D, Wu L, Breyer R, Mattson MP, Andreasson K. Neuroprotection by the PGE2 EP2 receptor in permanent focal cerebral ischemia. Ann Neurol 2005; 57(5):758-761.

271. Saleem S, Li RC, Wei G, Dore S. Effects of EP1 receptor on cerebral blood flow in the middle cerebral artery occlusion model of stroke in mice. J Neurosci Res 2007; 85(11):2433-2440.

272. Ikeda-Matsuo Y, Ikegaya Y, Matsuki N, Uematsu S, Akira S, Sasaki Y. Microglia-specific expression of microsomal prostaglandin E2 synthase-1 contributes to lipopolysaccharide-induced prostaglandin E2 production. J Neurochem 2005; 94(6):1546-1558.

273. Murakami M, Naraba H, Tanioka T, Semmyo N, Nakatani Y, Kojima F et al. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem 2000; 275(42):32783-32792.

274. Ikeda-Matsuo Y, Ota A, Fukada T, Uematsu S, Akira S, Sasaki Y. Microsomal prostaglandin E synthase-1 is a critical factor of stroke-reperfusion injury. Proc Natl Acad Sci U S A 2006; 103(31):11790-11795.

275. Wu CR, Zhang Y, Rose ME, Graham SH. Cyclooxygenase-2 activity contributes to neuronal expression of cyclin D1 after anoxia/ischemia in vitro and in vivo. Brain Res Mol Brain Res 2004; 132(1):31-37.

276. Mirjany M, Ho L, Pasinetti GM. Role of cyclooxygenase-2 in neuronal cell cycle activity and glutamate-mediated excitotoxicity. J Pharmacol Exp Ther 2002; 301(2):494-500.

277. Park DS, Morris EJ, Greene LA, Geller HM. G1/S cell cycle blockers and inhibitors of cyclin-dependent kinases suppress camptothecin-induced neuronal apoptosis. J Neurosci 1997; 17(4):1256-1270.

278. Park DS, Morris EJ, Padmanabhan J, Shelanski ML, Geller HM, Greene LA. Cyclin-dependent kinases participate in death of neurons evoked by DNA-damaging agents. J Cell Biol 1998; 143(2):457-467.

279. Park DS, Levine B, Ferrari G, Greene LA. Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J Neurosci 1997; 17(23):8975-8983.

280. Rideout HJ, Wang Q, Park DS, Stefanis L. Cyclin-dependent kinase activity is required for apoptotic death but not inclusion formation in cortical neurons after proteasomal inhibition. J Neurosci 2003; 23(4):1237-1245.

281. Rashidian J, Iyirhiaro G, Aleyasin H, Rios M, Vincent I, Callaghan S et al. Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo. Proc Natl Acad Sci U S A 2005; 102(39):14080-14085.

282. Katchanov J, Harms C, Gertz K, Hauck L, Waeber C, Hirt L et al. Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J Neurosci 2001; 21(14):5045-5053.

283. Timsit S, Rivera S, Ouaghi P, Guischard F, Tremblay E, Ben-Ari Y et al. Increased cyclin D1 in vulnerable neurons in the hippocampus after ischaemia and epilepsy: a modulator of in vivo programmed cell death? Eur J Neurosci 1999; 11(1):263-278.

284. Xiang Z, Ho L, Valdellon J, Borchelt D, Kelley K, Spielman L et al. Cyclooxygenase (COX)-2 and cell cycle activity in a transgenic mouse model of Alzheimer's disease neuropathology. Neurobiol Aging 2002; 23(3):327-334.

285. Sang N, Zhang J, Chen C. COX-2 oxidative metabolite of endocannabinoid 2-AG enhances excitatory glutamatergic synaptic transmission and induces neurotoxicity. J Neurochem 2007; 102(6):1966-1977.

286. Sang N, Zhang J, Chen C. PGE2 glycerol ester, a COX-2 oxidative metabolite of 2-arachidonoyl glycerol, modulates inhibitory synaptic transmission in mouse hippocampal neurons. J Physiol 2006; 572(Pt 3):735-745.

287. Fernandez-Lopez D, Martinez-Org, Nunez E, Romero J, Lorenzo P, Moro MA et al. Characterization of the neuroprotective effect of the cannabinoid agonist WIN-55212 in an in vitro model of hypoxic-ischemic brain damage in newborn rats. Pediatr Res 2006; 60(2):169-173.

288. Panikashvili D, Mechoulam R, Beni SM, Alexandrovich A, Shohami E. CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. J Cereb Blood Flow Metab 2005; 25(4):477-484.

289. Parmentier-Batteur S, Jin K, Mao XO, Xie L, Greenberg DA. Increased severity of stroke in CB1 cannabinoid receptor knock-out mice. J Neurosci 2002; 22(22):9771-9775.

290. Sommer C, Schomacher M, Berger C, Kuhnert K, Muller HD, Schwab S et al. Neuroprotective cannabinoid receptor antagonist SR141716A prevents downregulation of excitotoxic NMDA receptors in the ischemic penumbra. Acta Neuropathol 2006; 112(3):277-286.

291. Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin K et al. Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 1999; 19(8):2987-2995.

292. Sinor AD, Irvin SM, Greenberg DA. Endocannabinoids protect cerebral cortical neurons from in vitro ischemia in rats. Neurosci Lett 2000; 278(3):157-160.

293. Topol EJ. Failing the public health--rofecoxib, Merck, and the FDA. N Engl J Med 2004; 351(17):1707-1709.

294. Antman EM, DeMets D, Loscalzo J. Cyclooxygenase inhibition and cardiovascular risk. Circulation 2005; 112(5):759-770.

295. Mitchell JA, Warner TD. COX isoforms in the cardiovascular system: understanding the activities of non-steroidal anti-inflammatory drugs. Nat Rev Drug Discov 2006; 5(1):75-86.

296. Hinz B, Renner B, Brune K. Drug insight: cyclo-oxygenase-2 inhibitors--a critical appraisal. Nat Clin Pract Rheumatol 2007; 3(10):552-560.

297. Iezzi A, Ferri C, Mezzetti A, Cipollone F. COX-2: friend or foe? Curr Pharm Des 2007; 13(16):1715-1721.

298. Dogne JM, Hanson J, Supuran C, Pratico D. Coxibs and cardiovascular side-effects: from light to shadow. Curr Pharm Des 2006; 12(8):971-975.

299. Joshi GP, Gertler R, Fricker R. Cardiovascular thromboembolic adverse effects associated with cyclooxygenase-2 selective inhibitors and nonselective antiinflammatory drugs. Anesth Analg 2007; 105(6):1793-1804.

300. Salinas G, Rangasetty UC, Uretsky BF, Birnbaum Y. The cycloxygenase 2 (COX-2) story: it's time to explain, not inflame. J Cardiovasc Pharmacol Ther 2007; 12(2):98-111.

301. White WB. Cardiovascular risk, hypertension, and NSAIDs. Curr Rheumatol Rep 2007; 9(1):36-43.

302. Andersohn F, Schade R, Suissa S, Garbe E. Cyclooxygenase-2 selective nonsteroidal anti-inflammatory drugs and the risk of ischemic stroke: a nested case-control study. Stroke 2006; 37(7):1725-1730.

303. Martinez-Gonzalez J, Badimon L. Mechanisms underlying the cardiovascular effects of COX-inhibition: benefits and risks. Curr Pharm Des 2007; 13(22):2215-2227.

304. Bombardier C, Laine L, Reicin A, Shapiro D, Burgos-Vargas R, Davis B et al. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med 2000; 343(21):1520-8, 2.

305. Bresalier RS, Sandler RS, Quan H, Bolognese JA, Oxenius B, Horgan K et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 2005; 352(11):1092-1102.

306. Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 2005; 352(11):1071-1080.

307. Chaiamnuay S, Allison JJ, Curtis JR. Risks versus benefits of cyclooxygenase-2-selective nonsteroidal antiinflammatory drugs. Am J Health Syst Pharm 2006; 63(19):1837-1851.

308. Kumihashi K, Uchida K, Miyazaki H, Kobayashi J, Tsushima T, Machida T. Acetylsalicylic acid reduces ischemia-induced proliferation of dentate cells in gerbils. Neuroreport 2001; 12(5):915-917.

309. Sasaki T, Kitagawa K, Sugiura S, Omura-Matsuoka E, Tanaka S, Yagita Y et al. Implication of cyclooxygenase-2 on enhanced proliferation of neural progenitor cells in the adult mouse hippocampus after ischemia. J Neurosci Res 2003; 72(4):461-471.

310. Kim E, Raval AP, Defazio RA, Perez-Pinzon MA. Ischemic preconditioning via epsilon protein kinase C activation requires cyclooxygenase-2 activation in vitro. Neuroscience 2007; 145(3):931-941.

311. Horiguchi T, Snipes JA, Kis B, Shimizu K, Busija DW. Cyclooxygenase-2 mediates the development of cortical spreading depression-induced tolerance to transient focal cerebral ischemia in rats. Neuroscience 2006; 140(2):723-730.

Metadata

Repository Staff Only: item control page