Del Giudice, P. and Fusi, S. and Badoni, D. and Dante, V. and Amit, Daniel J. (1998) Learning attractors in an asynchronous, stochastic electronic neural network. [Journal (Paginated)]
Full text available as:
Postscript
11Mb |
Abstract
LANN27 is an electronic device implementing in discrete electronics a fully connected (full feedback) network of 27 neurons and 351 plastic synapses with stochastic Hebbian learning. Both neurons and synapses are dynamic elements, with two time constants - fast for neurons and slow for synapses. Learning, synaptic dynamics, is analogue and is driven in a Hebbian way by neural activities. Long-term memorization takes place on a discrete set of synaptic efficacies and is effected in a stochastic manner. The intense feedback between the nonlinear neural elements, via the learned synaptic structure, creates in an organic way a set of attractors for the collective retrieval dynamics of the neural system, akin to Hebbian learned reverberations. The resulting structure of the attractors is a record of the large-scale statistics in the uncontrolled, incoming flow of stimuli. As the statistics in the stimulus flow changes significantly, the attractors slowly follow it and the network behaves as a palimpsest - old is gradually replaced by new. Moreover, the slow learning creates attractors which render the network a prototype extractor: entire clouds of stimuli, noisy versions of a prototype, used in training, all retrieve the attractor corresponding to the prototype upon retrieval. Here we describe the process of studying the collective dynamics of the network, before, during and following learning, which is rendered complex by the richness of the possible stimulus streams and the large dimensionality of the space of states of the network. We propose sampling techniques and modes of representation for the outcome.
Item Type: | Journal (Paginated) |
---|---|
Keywords: | neuralnetwrok, stochastic learning, electronics, learning, forgetting, dynamic synapsesclassification |
Subjects: | Neuroscience > Computational Neuroscience Computer Science > Machine Learning Neuroscience > Neural Modelling |
ID Code: | 62 |
Deposited By: | Amit, Daniel J. |
Deposited On: | 26 Aug 1998 |
Last Modified: | 11 Mar 2011 08:53 |
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page