Greco, Alberto and Cangelosi, Angelo and Harnad, Stevan (1998) A connectionist model for categorical perception and symbol grounding. [Conference Paper] (Unpublished)
Full text available as:
HTML
19Kb |
Abstract
Neural network models of categorical perception can help solve the symbol-grounding problem [Harnad, 1990; 1993] by connecting analog sensory projections to symbolic representations through learned category-invariance detectors in a hybrid symbolic/nonsymbolic system. Our nets learn to categorize and name 50x50 pixel images of circles, ellipses, squares and rectangles projected onto the receptive field of a 7x7 retina. The nets first learn to do prototype matching and then entry-level naming for the four kinds of stimuli, grounding their names directly in the input patterns via hidden-unit representations. Next, a higher-order categorization (symmetric vs. asymmetric) is learned, either directly from the input, as with the entry- level categories, or from combinations of the grounded category names (symbols). We analyze the architectures and input conditions that allow grounding to be "transferred" from directly grounded entry-level category names to higher- order category names. Implications of such hybrid models for the evolution and learning of language are discussed.
Item Type: | Conference Paper |
---|---|
Keywords: | symbol grounding, categorical perception, categorisation, language evolution modelling, neural networks, backpropagation, geometric shapes |
Subjects: | Psychology > Cognitive Psychology Computer Science > Neural Nets |
ID Code: | 622 |
Deposited By: | Cangelosi, Professor Angelo |
Deposited On: | 31 Mar 1998 |
Last Modified: | 11 Mar 2011 08:54 |
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page