Cogprints

A Speech Act Calculus. A Pragmatised Natural Deduction Calculus and its Meta-theory

Cordes, M. A. Moritz and Reinmuth, M. A. Friedrich (2011) A Speech Act Calculus. A Pragmatised Natural Deduction Calculus and its Meta-theory. (Unpublished)

Full text available as:

[img]
Preview
PDF
Available under License Creative Commons Attribution Non-commercial No Derivatives.

3057Kb

Abstract

Building on the work of Peter Hinst and Geo Siegwart, we develop a pragmatised natural deduction calculus, i.e. a natural deduction calculus that incorporates illocutionary operators at the formal level, and prove its adequacy.

Item Type:Other
Additional Information:Translation of our paper "Ein Redehandlungskalkül. Ein pragmatisierter Kalkül des natürlichen Schließens nebst Metatheorie"; online available at http://hal.archives-ouvertes.fr/hal-00532643/en/ .
Keywords:Speech Act Calculus, Natural Deduction, Logic, Pragmatisation
Subjects:Philosophy > Logic
ID Code:7596
Deposited By: Reinmuth, M. A. Friedrich
Deposited On:30 Aug 2011 04:20
Last Modified:30 Aug 2011 04:20

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

BOSTOCK, D. Intermediate Logic (1997): Intermediate Logic. Oxford: Clarendon Press.

DALEN, D. V. Logic and structure (2004): Logic and structure. 4. ed. Berlin: Springer.

DEISER, O. Mengenlehre (2004): Einführung in die Mengenlehre. Die Mengenlehre Georg Cantors und ihre Axiomatisierung durch Ernst Zermelo. 2nd ed. Berlin: Springer.

EBBINGHAUS, H.-D. Mengenlehre (2003): Einführung in die Mengenlehre. 4th ed. Heidelberg: Spektrum, Akad. Verl.

EBBINGHAUS, H.-D.; FLUM, J.; THOMAS, W. Mathematische Logik (1996): Einführung in die mathematische Logik. 4th ed. Heidelberg: Spektrum, Akad. Verl.

GLOEDE, K. Mathematische Logik (2006/07): Skriptum zur Vorlesung Mathematische Logik. Mathematisches Institut der Universität Heidelberg. http://www.math.uni-heidelberg.de/logic/skripten/math_logik/ mathlogik.pdf.

GRÄDEL, E. Mathematische Logik (2009): Mathematische Logik. SS 2009. Mathematische Grundlagen der Informatik. RWTH Aachen. http://www.logic.rwth-aachen.de/files/MaLo/script-2up.pdf.

HINST, P. Pragmatische Regeln (1982): Pragmatische Regeln des logischen Argumentierens. In: GETHMANN, C. F. (ed.): Logik und Pragmatik. Frankfurt am Main: Suhrkamp, pp. 199–215.

HINST, P. Logischer Grundkurs (1997/1998): Logischer Grundkurs I. Logische Propädeutik und Mengenlehre. WS 1997/1998. LMU München.

HINST, P. Logik (2009): Grundbegriffe der Logik. Typescript, München.

KALISH, D.; MONTAGUE, R.; MAR, G. Logic (1980): Logic. Techniques of formal reasoning. 2nd ed. San Diego, Ca: Harcourt Brace Jovanovich.

KLEINKNECHT, R. Grundlagen der modernen Definitionstheorie (1979): Grundlagen der modernen Defini-tionstheorie. Königstein/Ts.: Scriptor-Verl.

LINK, G. Collegium Logicum (2009): Collegium Logicum: Logische Grundlagen der Philosophie und der Wissenschaften. 2 volumes. Paderborn: Mentis, vol. 1.

PELLETIER, F. J. A Brief History of Natural Deduction (1999): A Brief History of Natural Deduction. In: History and Philosophy of Logic, vol. 20.1, pp. 1–31. Online at http://www.sfu.ca/~jeffpell/papers/NDHistory.pdf.

PELLETIER, F. J. A History of Natural Deduction (2001): A History of Natural Deduction and Elementary Logic Textbooks. 1999. In: WOODS, J.; BROWN, B. (eds.): Logical Consequence: Rival Approaches. Proceedings of the 1999 Conference of the Society of Exact Philosophy. Oxford: Hermes Science Publishing, pp. 105–138. Online at http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf.

PRAWITZ, D. Natural deduction (2006): Natural deduction. A proof-theoretical study. Unabridged republ. of the ed. Almqvist & Wiksell, Stockholm, 1965. Mineola, NY: Dover Publ.

RAUTENBERG, W. Mathematical Logic (2006): A Concise Introduction to Mathematical Logic. 2nd ed. New York: Springer.

SHAPIRO, S. Classical Logic (2000 et seqq.): Classical Logic. In: ZALTA, E. N. (ed.): The Stanford Encyclope-dia of Philosophy, Winter 2009 Edition. http://plato.stanford.edu/archives/win2009/entries/logic-classical/.

SIEGWART, G. Vorfragen (1997): Vorfragen zur Wahrheit. Mu?nchen: Oldenbourg.

SIEGWART, G. Denkwerkzeuge (2002 et seqq.): Denkwerkzeuge. Eine Vorschule der Philosophie. http://www.phil.uni-greifswald.de/bereich2/philosophie/personal/prof-dr-geo-siegwart/skripte.html.

SIEGWART, G. Alethic Acts (2007): Alethic Acts and Alethiological Reflection. An Outline of a Constructive Philosophy of Truth. In: SIEGWART, G.; GREIMANN, D. (eds.): Truth and speech acts. Studies in the philosophy of language. New York [u.a.]: Routledge, pp. 41–58.

TENNANT, N. Natural logic (1990): Natural logic. 1st ed., Repr. in paperback with corrections. Edinburgh: Edinburgh Univ. Press.

WAGNER, H. Logische Systeme (2000): Logische Systeme der Informatik. WS 2000/2001. Universität Dort-mund. http://lrb.cs.uni-dortmund.de/Lehre/LSI_WS9900/lsiws2000.pdf.

Metadata

Repository Staff Only: item control page