Automatic Ontology-Based Knowledge Extraction from Web Documents
2003) Automatic Ontology-Based Knowledge Extraction from Web Documents. IEEE Intelligent Systems 18(1):pp. 14-21. (
Full text available as:
PDF - Requires Adobe Acrobat Reader or other PDF viewer. |
To bring the Semantic Web to life and provide advanced knowledge services, we need efficient ways to access and extract knowledge from Web documents. Although Web page annotations could facilitate such knowledge gathering, annotations are rare and will probably never be rich or detailed enough to cover all the knowledge these documents contain. Manual annotation is impractical and unscalable, and automatic annotation tools remain largely undeveloped. Specialized knowledge services therefore require tools that can search and extract specific knowledge directly from unstructured text on the Web, guided by an ontology that details what type of knowledge to harvest. An ontology uses concepts and relations to classify domain knowledge. Other researchers have used ontologies to support knowledge extraction,1,2 but few have explored their full potential in this domain. The Artequakt project links a knowledge-extraction tool with an ontology to achieve continuous knowledge support and guide information extraction.//au: rewrite okay?// The extraction tool searches online documents and extracts knowledge that matches the given classification structure. It provides this knowledge in a machine-readable format that will be automatically maintained in a knowledge base (KB). Users could further enhance knowledge extraction using a lexicon-based term expansion mechanism that provides extended ontology terminology.
Keywords: | artequakt, ontology population |
---|---|
Subjects: | AKT Challenges > Knowledge retrieval AKT Challenges > Knowledge acquisition AKT Challenges > Knowledge publishing |
ID Code: | 105 |
Deposited By: | Alani, Harith |
Deposited On: | 20 February 2003 |
Contact the site administrator at: hg@ecs.soton.ac.uk