LRD: Latent Relation Discovery for Vector Space Expansion and Information Retrieval
2006) LRD: Latent Relation Discovery for Vector Space Expansion and Information Retrieval. In Proceedings The Seventh International Conference on Web-Age Information Management (WAIM 2006), Hong Kong, China. (
This document is not available online.
In this paper, we propose a text mining method called LRD (latent relation discovery), which extends the traditional vector space model of document representation in order to improve information retrieval (IR) on documents and document clustering. Our LRD method extracts terms and entities, such as person, organization, or project names, and discovers relationships between them by taking into account their co-occurrence in textual corpora. Given a target entity, LRD discovers other entities closely related to the target effec-tively and efficiently. With respect to such relatedness, a measure of relation strength between entities is defined. LRD uses relation strength to enhance the vector space model, and uses the enhanced vector space model for query based IR on documents and clustering documents in order to discover complex rela-tionships among terms and entities. Our experiments on a standard dataset for query based IR shows that our LRD method performed significantly better than traditional vector space model and other five standard statistical methods for vector expansion.
Keywords: | information retrieval, knowledge management, vector space, vector space expansion, relation strength, clustering |
---|---|
Subjects: | AKT Challenges > Knowledge retrieval AKT Challenges > Knowledge acquisition |
ID Code: | 494 |
Deposited By: | Zhu, Dr. Jianhan |
Deposited On: | 03 April 2006 |
Contact the site administrator at: hg@ecs.soton.ac.uk