The University of Southampton

Lead Niobate-based Tunable Dielectrics for Smart Microwave and Millimeter-wave Systems

Logo
Date:
2016-2020
Themes:
System design and RF, Materials & Technology, Communications
Funding:
EPSRC (EP/N032470/1)

Electronically beam-steerable array antennas (phased arrays or smart antennas) at microwave and millimetre-wave (mm-wave) frequencies are extremely important for various wireless systems including satellite communications, terrestrial mobile communications, radars, "Internet Of Things", wireless power transmission, satellite navigations and deep-space communication. Traditionally, beam steering of antenna is achieved by moving the reflector mechanically, which is slow, bulky and not reliable. Phased arrays, which integrate antennas and phase shifter circuits, are an attractive alternative to gimbaled parabolic reflectors as they offer rapid beam steering towards the desired targets and better reliability. Phase shifters are critical components in phased arrays as the beam steering is achieved by controlling phase shifters electronically.

A promising research direction to create small, fast, reliable phase shifters with low insertion loss at high frequency is the use of tunable dielectric materials due to its potential of monolithic fabrication of array antennas and circuits. A breakthrough in such materials came recently when we demonstrated that Lead Niobate Pyrochlores PbnNb2O5+n gives the best combination of dielectric constant, tunability and low loss of any known thin film system. Translating these superior materials properties into actual device performance and high-performance electronically beam-steerable arrays antennas at microwave and mm-wave bands are the key aims of this project

Primary investigators

Secondary investigators

  • Yudong Wang
  • Ioanna Bakaimi (Chemistry)

Partners

  • University of Sheffield
  • University of Kent

Associated research group

  • Sustainable Electronic Technologies
Share this project FacebookTwitterWeibo