About this course
Fuel your fascination for space and the technologies used to investigate it. On this MPhys Physics with Space Science degree you’ll explore a wide range of subjects, from the essentials of astronomy through to satellite design and space weather. You’ll also benefit from the latest research.
With the global space market set to almost double by 2030, your skills will be in high demand. This degree will also prepare you for further study at PhD level.
You’ll examine phenomena that can only be monitored from space, such as geomagnetic storms and solar wind, and combine your physics knowledge with space engineering principles to learn about spacecraft design.
A Tenerife study trip is another high point. Working as part of an international and interdisciplinary team, you’ll design a space-based telescope and its instrumentation, and plan its launch.
Throughout your degree you’ll study the core physics subjects of the Masters degree course, but with an emphasis on space science.
The course is accredited by the Institute of Physics and offers an academic scholarship scheme worth up to £20,000, plus an unconditional offer based on a competitive exam taken at applicant visit days.
Course location
This course is based at Highfield.
Awarding body
This qualification is awarded by the University of Southampton.
Download the Course Description Document
The Course Description Document details your course overview, your course structure and how your course is taught and assessed.
Changes due to COVID-19
Although the COVID-19 situation is improving, any future restrictions could mean we might have to change the way parts of our teaching and learning take place in 2021 to 2022. We're working hard to plan for a number of possible scenarios. This means that some of the information on this course page may be subject to change.
Find out more on our COVID advice page.
Entry requirements
For Academic year 202223
A-levels
AAA-AAB including grades AA in mathematics/further mathematics and physics, with a pass in the physics Practical
or
AABC including grades AA in mathematics/further mathematics and physics, with a pass in the physics Practical
A-levels additional information
Offers typically exclude General Studies and Critical Thinking. Successful applicants will be invited to visit the department and attend an optional interview; the optional interview could lead to a lower offer.
A-levels with Extended Project Qualification
If you are taking an EPQ in addition to 3 A levels, you will receive the following offer in addition to the standard A level offer:
AAB including mathematics/further mathematics (minimum grade A) and physics (minimum grade A), with a pass in the physics Practical, plus grade A in the EPQ
A-levels contextual offer
We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience.
Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Diploma
Pass, with 36-34 points overall, with 18-17 points required at Higher Level, including 6 at Higher Level in Mathematics (Analysis and Approaches or Applications and Interpretation) and 6 at Higher Level in physics
International Baccalaureate Diploma additional information
Applicants may be invited to visit the department and have an optional interview; an optional interview may lead to a lower offer.
International Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Career Programme (IBCP) statement
Offers will be made on the individual Diploma Course subject(s) and the career-related study qualification. The CP core will not form part of the offer. Where there is a subject pre-requisite(s), applicants will be required to study the subject(s) at Higher Level in the Diploma course subject and/or take a specified unit in the career-related study qualification. Applicants may also be asked to achieve a specific grade in those elements.
Please see the University of Southampton International Baccalaureate Career-Related Programme (IBCP) Statement for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
BTEC
D in the BTEC National Extended Certificate plus grades AA in A-level mathematics/further mathematics and physics, with a pass in the physics Practical
We do not accept the BTEC National Extended Diploma
We do not accept the BTEC National Diploma
Applicants with a BTEC National Extended Diploma or the BTEC National Diploma should apply for the Engineering/Physics/Mathematics/Geophysics Foundation Year
RQF BTEC
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience.
Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Additional information
Applicants may be invited to visit the department and have an optional interview; an optional interview may lead to a lower offer.
QCF BTEC
D in the BTEC Subsidiary Diploma plus grades AA in A-level mathematics/further mathematics and physics, with a pass in the physics Practical
We do not accept the BTEC Diploma
We do not accept the BTEC Extended Diploma
Applicants with a BTEC Extended Diploma or the BTEC Diploma should apply for the Engineering/Physics/Mathematics/Geophysics Foundation Year
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Access to HE Diploma
Applicants with an Access to HE Diploma should apply for the Engineering/Physics/Mathematics/Geophysics Foundation Year
Access to HE additional information
There are no additional requirements
Irish Leaving Certificate
Irish Leaving Certificate (first awarded 2017)
H1,H1,H2,H2,H2,H2 including H1 in mathematics and physics - H1,H2,H2,H2,H2,H2 including mathematics and physics (one of which must be at H1)
Irish Leaving Certificate (first awarded 2016)
A1,A1,A2,A2,A2,A2, including mathematics at A1 and physics at A1
Irish certificate additional information
Applicants may be invited to visit the department and have an optional interview; an optional interview may lead to a lower offer.
Scottish Qualification
Offers will be based on exams being taken at the end of S6. Subjects taken and qualifications achieved in S5 will be reviewed. Careful consideration will be given to an individual’s academic achievement, taking in to account the context and circumstances of their pre-university education.
Please see the University of Southampton’s Curriculum for Excellence Scotland Statement (PDF) for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
Cambridge Pre-U
D3,D3,D3 - D3 D3 M2 in three Principal subjects including mathematics/further mathematics (minimum grade D3) and physics (minimum grade D3)
Cambridge Pre-U additional information
Cambridge Pre-U's can be used in combination with other qualifications such as A Levels to achieve the equivalent of the typical offer, where D3 can be used in lieu of A Level grade A or grade M2 can be used in lieu of A Level grade B.
Applicants may be invited to visit the department and have an optional interview; an optional interview may lead to a lower offer.
Welsh Baccalaureate
AAA-AAB including grades AA in mathematics/further mathematics and physics, with a pass in the physics Practical
or
AA from two A-levels including mathematics/further mathematics and physics, with a pass in the physics Practical and A-B from the Advanced Welsh Baccalaureate Skills Challenge Certificate AABC including grades AA in mathematics/further mathematics and physics, with a pass in the physics PracticalorAA from two A-levels including mathematics/further mathematics and physics, with a pass in the physics Practical, and grades BC from a third A-level and the Advanced Welsh Baccalaureate Skills Challenge Certificate
Welsh Baccalaureate additional information
Offers typically exclude General Studies and Critical Thinking. Applicants may be invited to visit the department and have an optional interview; an optional interview may lead to a lower offer.
Welsh Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
European Baccalaureate
80% overall including 8.5 in mathematics and physics, with at at least 5 in Maths as an elective subject. Applicants may be invited to visit the department and have an optional interview; an optional interview may lead to a lower offer.
Other requirements
GCSE requirements
Applicants must hold GCSE English language (or GCSE English) (minimum grade 4/C) and mathematics (minimum grade 4/C)
Find the equivalent international qualifications for our entry requirements.
English language requirements
If English isn't your first language, you'll need to complete an International English Language Testing System (IELTS) to demonstrate your competence in English. You'll need all of the following scores as a minimum:
IELTS score requirements
- overall score
- 6.5
- reading
- 5.5
- writing
- 5.5
- speaking
- 5.5
- listening
- 5.5
We accept other English language tests. Find out which English language tests we accept.
You might meet our criteria in other ways if you do not have the qualifications we need. Find out more about:
-
our Access to Southampton scheme for students living permanently in the UK (including residential summer school, application support and scholarship)
-
skills you might have gained through work or other life experiences (otherwise known as recognition of prior learning)
Find out more about our Admissions Policy.
For Academic year 202324
A-levels
AAA-AAB including grades AA in mathematics or further mathematics and physics, with a pass in the physics Practical (where it is separately endorsed) or AABC including grades AA in mathematics or further mathematics and physics, with a pass in the physics Practical (where it is separately endorsed)
A-levels additional information
Offers typically exclude General Studies and Critical Thinking. Successful applicants will be invited to visit the department and attend an optional interview. The optional interview may lead to a reduced offer. Applicants who have not studied mathematics/further mathematics and/or physics at A-level can apply for the Engineering/Physics/Mathematics Foundation Year. Please visit theFoundation Year page for more information.
A-levels with Extended Project Qualification
If you are taking an EPQ in addition to 3 A levels, you will receive the following offer in addition to the standard A level offer: AAB including mathematics or further mathematics (minimum grade A) and physics (minimum grade A), with a pass in the physics Practical (where it is separately endorsed) plus grade A in the EPQ
A-levels contextual offer
We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Diploma
Pass, with 36-34 points overall, with 18-17 points required at Higher Level, including 6 at Higher Level in Mathematics (Analysis and Approaches or Applications and Interpretation) and 6 at Higher Level in physics
International Baccalaureate Diploma additional information
Successful applicants will be invited to visit the department and attend an optional interview. The optional interview may lead to a reduced offer. Applicants who have not studied mathematics and/or physics at Higher Level can apply for the Engineering/Physics/Mathematics Foundation Year. Please visit theFoundation Year page for more information.
International Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Career Programme (IBCP) statement
Offers will be made on the individual Diploma Course subject(s) and the career-related study qualification. The CP core will not form part of the offer. Where there is a subject pre-requisite(s), applicants will be required to study the subject(s) at Higher Level in the Diploma course subject and/or take a specified unit in the career-related study qualification. Applicants may also be asked to achieve a specific grade in those elements. Please see the University of Southampton International Baccalaureate Career-Related Programme (IBCP) Statement for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
BTEC
D in the BTEC National Extended Certificate plus grades AA in A-level mathematics or further mathematics and physics, with a pass in the physics Practical (where it is separately endorsed) We will consider the BTEC National Extended Diploma if studied alongside A-levels in mathematics/further mathematics and physics We will consider the BTEC National Diploma if studied alongside A-levels in mathematics/further mathematics and physics
RQF BTEC
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Additional information
Applicants who have not studied the required subjects at A-level can apply for the Engineering/Physics/Mathematics Foundation Year. Please visit theFoundation Year page for more information.
QCF BTEC
D in the BTEC Subsidiary Diploma plus grades AA in A-level mathematics or further mathematics and physics, with a pass in the physics Practical (where it is separately endorsed) We will consider the BTEC Extended Diploma if studied alongside A-levels in mathematics/further mathematics and physics We will consider the BTEC Diploma if studied alongside A-levels in mathematics/further mathematics and physics
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Access to HE Diploma
Not accepted for this course. Applicants with an Access to HE Diploma in a relevant subject should apply for the Engineering/Physics/Mathematics Foundation Year. Please visit theFoundation Year page for more information.
Access to HE additional information
Irish Leaving Certificate
Irish Leaving Certificate (first awarded 2017)
H1,H1,H2,H2,H2,H2 including H1 in mathematics and physics - H1,H2,H2,H2,H2,H2 including mathematics and physics (one of which must be at H1)
Irish Leaving Certificate (first awarded 2016)
A1,A1,A2,A2,A2,A2, including mathematics at A1 and physics at A1
Irish certificate additional information
Successful applicants will be invited to visit the department and attend an optional interview. The optional interview may lead to a reduced offer. Applicants who have not studied mathematics and/or physics can apply for the Engineering/Physics/Mathematics Foundation Year. Please visit theFoundation Year page for more information.
Scottish Qualification
Offers will be based on exams being taken at the end of S6. Subjects taken and qualifications achieved in S5 will be reviewed. Careful consideration will be given to an individual’s academic achievement, taking in to account the context and circumstances of their pre-university education.
Please see the University of Southampton’s Curriculum for Excellence Scotland Statement (PDF) for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
Cambridge Pre-U
D3,D3,D3 - D3 D3 M2 in three Principal subjects including mathematics/further mathematics (minimum grade D3) and physics (minimum grade D3)
Cambridge Pre-U additional information
Cambridge Pre-U's can be used in combination with other qualifications such as A Levels to achieve the equivalent of the typical offer, where D3 can be used in lieu of A Level grade A or grade M2 can be used in lieu of A Level grade B. Successful applicants will be invited to visit the department and attend an optional interview. The optional interview may lead to a reduced offer. Applicants who have not studied the required Principal subjects can apply for the Engineering/Physics/Mathematics Foundation Year. Please visit theFoundation Year page for more information.
Welsh Baccalaureate
AAA-AAB including grades AA in mathematics or further mathematics and physics, with a pass in the physics Practical (where it is separately endorsed) or AA from two A-levels including mathematics or further mathematics and physics, with a pass in the physics Practical (where it is separately endorsed) and A-B from the Advanced Welsh Baccalaureate Skills Challenge Certificate or AABC including grades AA in mathematics or further mathematics and physics, with a pass in the physics Practical (where it is separately endorsed) or AA from two A-levels including mathematics or further mathematics and physics, with a pass in the physics Practical (where it is separately endorsed), and grades BC from a third A-level and the Advanced Welsh Baccalaureate Skills Challenge Certificate
Welsh Baccalaureate additional information
Offers typically exclude General Studies and Critical Thinking. Successful applicants will be invited to visit the department and attend an optional interview. The optional interview may lead to a reduced offer. Applicants who have not studied mathematics/further mathematics and/or physics at A-level can apply for the Engineering/Physics/Mathematics Foundation Year. Please visit theFoundation Year page for more information.
Welsh Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
European Baccalaureate
80% overall including 8.5/10 in mathematics and physics, with at least 5/10 in advanced mathematics if studied
Other requirements
GCSE requirements
Applicants must hold GCSE English language (or GCSE English) (minimum grade 4/C) and mathematics (minimum grade 4/C)
You might meet our criteria in other ways if you do not have the qualifications we need. Find out more about:
-
our Access to Southampton scheme for students living permanently in the UK (including residential summer school, application support and scholarship)
-
skills you might have gained through work or other life experiences (otherwise known as recognition of prior learning)
Find out more about our Admissions Policy.
Got a question?
Please contact our enquiries team if you're not sure that you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Course structure
You don’t need to choose your modules when you apply. Your academic tutor will help you to customise your course.
You’ll study core physics subjects and space science modules.
Right from the start you’ll do mini-projects in the lab and apply your analytical and problem-solving skills.
Year 1 overview
This consists of core modules to give you a grounding in the key principles of physics and experimentation.
These include:
-
physics skills
-
mathematical methods
-
waves and light
-
energy and matter
-
motion and relativity
-
electricity and magnetism
There will also be an introduction to astronomy and space science.
Year 2 overview
Core modules include topics on:
-
electromagnetism
-
quantum physics
-
classical mechanics
-
practical photonics
You’ll also study the 'European dimension in space and astronautics' module.
Year 3 overview
Core modules in year 3 cover everything from particle physics to theories of matter, space and time and atomic physics.
There is also an individual dissertation and space science modules on space plasma physics and advanced astronautics.
Year 4 overview
In the fourth year you’ll work with another student on an extended research project on as aspects of space science that interests you.
You’ll have access to research data, for example, from the European Space Agency and NASA space missions, or our monitoring instrumentation in the Arctic.
Optional modules include study of:
-
nanoscience
-
applied nuclear physics
-
cosmology and the early universe
-
relativity
-
black holes
-
astrophysics
-
advanced quantum physics
-
particle physics
-
spacecraft orbital mechanics and control
Want more detail? See all the modules in the course.
Modules
Changes due to COVID-19
Although the COVID-19 situation is improving, any future restrictions could mean we might have to change the way parts of our teaching and learning take place in 2021 to 2022. We're working hard to plan for a number of possible scenarios. This means that some of the information on this course page may be subject to change.
Find out more on our COVID advice page.
For entry in Academic Year 2022-23
Year 1 modules
You must study the following modules in year 1:
The major concepts covered are: - The abstraction from forces to fields using the examples of the electric and magnetic fields, with some applications - The connection between conservative forces and potential energy - How charges move through electri...
This course introduces the ideas of thermal physics, contrasting the complexity of a world composed of huge numbers of sub-microscopic particles with the simplicity of the thermodynamic laws that govern its large-scale behaviour.
The module shows how simple physical principles can be used to learn about the Universe. The focus is upon how one can measure physical quantities such as size, distance, temperature, age and mass for the variety of objects in the Universe. By its end stu...
To provide students with the necessary skills and confidence to apply a range of mathematical methods to problems in the physical sciences. We build on the methods developed in MATH1006 (or MATH1008) but extend many of the ideas from ordinary functions to...
To provide students with the necessary skills and confidence to apply a range of mathematical methods to problems in the physical sciences. Both MATH1006 and MATH1008 cover essentially the same topics in calculus that are of relevance to applications in t...
The first part of the module focuses on Newton’s laws of motion, potentials, conservation of energy, momentum and angular momentum, projectiles, circular motion, gravity and simple harmonic motion including damping. The second part of the module is an ...
The primary goal is to provide students with the practical programming and data analysis skills that are necessary for both their degree course and most careers in physics. Python is used as the introductory programming language, and numerical simulations...
The Physics Skills units develop a range of skills needed by a professional physicist, including facility in conducting experiments and in analysing and reporting their results. Physics Skills 1 runs in first semester and its companion Physics Skills 2 (P...
The Physics Skills units develop a range of skills needed by a professional physicist, including facility in conducting experiments and in analysing and reporting their results. Physics Skills 1 runs in first semester and its companion Physics Skills 2 (P...
It will arm students with a basic knowledge of optics, including ray propagation, polarization and diffraction, and introduce the dual wave and particle characteristics of light and matter. It provides a base for further study of optics, wave physics and ...
Year 2 modules
You must study the following modules in year 2:
This module introduces the fundamental concepts of astronautics and spacecraft engineering and applies the design approach to two separate case studies: the first for an interplanetary mission and the second for an Earth observation mission.
Beginning with a review of Newton's Laws applied to systems of particles, the course moves on to rotational motion, dynamical gravity (Kepler's Laws) and motion in non-inertial reference frames. Systems of coupled oscillators are studied.
Electromagnetism is one of the brilliant successes of nineteenth century physics and the equations formulated by Maxwell are believed to account exactly for all classical electromagnetic phenomena. The aim of this course is to present the laws of elect...
This module will provide students with an insight into the advantages of collaboration within Europe for the promotion of Space Science. The mechanism for the selection of missions and their subsequent development will be illustrated using a number of top...
The PHYS2022 Physics from Evidence I module consists of three parts: Teaching Lab, Computing Module and Student Conference. The Teaching Lab and Computing Modules run through the first 10 weeks of the semester and the Student Conference is in week 12.
After studying this course students should be able to explain the concept of quantum mechanical wave function and its basic properties, the Schrödinger equation, the concepts of operator, eigenstates and the significance of measurements, and describe the ...
Statistical mechanics links the microscopic properties of physical systems to their macroscopic properties. Thermodynamics, which describes macroscopic properties, can then be derived from statistical mechanics with a few well motivated postulates. It lea...
This course introduces the properties and mechanics of waves, from the derivation and solution of wave equations, through the origins of the classical processes of refraction, dispersion and interference, to the quantum mechanical phenomenon of the uncert...
Year 3 modules
You must study the following modules in year 3:
This module is essential for anyone interested in pursuing space in the spacecraft theme or as an individual project. It builds on the basics first introduced in Part 2 and looks at each of the key subsystems of a spacecraft in detail. The module includes...
The aim of this course is to apply quantum physics to the study of atoms.
This Computational Physics course is designed for students with definite interest in tackling physics problems that are only tractable through the use of computers. It covers all types of application of computers by physicists, except the control of equip...
This course builds upon the Statistical Mechanics Course (PHYS2024) to form a complete basic course on the fundamentals of the physics of solids. After the course the student should have developed the necessary theoretical knowledge to enable them to unde...
The first part of the course is devoted to exploring a given topic via group work, assessed via short, written summary (extended abstract) and oral presentation. The second part consists of an individual dissertation that is assessed via a written report...
Students will learn about Nuclear Scattering, various properties of Nuclei, the Liquid Drop Model and the Shell Model, radioactive decay, fission and fusion. By the end of the course, the students should be able to classify elementary particles into hadro...
A wide variety of physics topics is covered, showing the experimental evidence underlying a number of topics in physics encountered in lecture courses and textbooks. Students are also introduced to techniques they might encounter in a physics-related care...
The aim of this course is to explore the physical processes which occur in the space environment. Theories of solar wind propagation and its interaction with the earth are developed and compared with data from satellites and ground based observatories. ...
Variational methods in classical physics will be reviewed and the extension of these ideas in quantum mechanics will be introduced.
Year 4 modules
You must study the following modules in year 4:
Students in the synoptic exam will be expected to display a broad knowledge and understanding of the core first, second and third year courses, to understand the inter-relations between those courses and to display problem solving skills in novel problem ...
In this module, students undertake a research project which extends over both semesters of the final year. Students normally work in pairs, in close collaboration with a member of staff.
This module introduces students to the fundamental concepts of spaceflight orbital mechanics and then elaborates on trajectory design for planet centred and interplanetary missions. Starting from a review of Keplerian motion introduced in earlier modules,...
You must also choose from the following modules in year 4:
This course will cover advanced topics of quantum mechanics including postulates of quantum mechanics, tools of quantum mechanics, Dirac notation, Simple Harmonic oscillator (studied using raising and lowering operators), orbital and spin angular momentum...
The aim of this course is to communicate knowledge of physical techniques which exploit nuclear particles, and to develop an understanding of the underlying physics. Important themes are nuclear processes and the interaction of nuclear radiation with the ...
Modern cosmology is a fascinating and fast-developing field, with intense research activity fuelled by major discoveries made in the last decade. These have overturned our understanding of the Universe’s properties and established a new standard cosmologi...
Lasers and photonic techniques are used in all branches of science and technology. The principles of laser operation will be discussed, with reference to commonly used laser systems. The course provides knowledge of the laser as a fundamental tool of cont...
This course will focus on nanomaterials, chemical synthesis and technological developments. This is a multidisciplinary module involving chemistry, physics, materials and biology. Students will be given non-assessed problems sheets and are expected to ...
Relativistic wave equations with their predictions of anti-particles and fermion spin will be explored. The fundamental role of gauge symmetries in current theories of force will lead to the study of the standard model of particle physics, including the s...
Since the end of the 1990s, cosmology has experienced one of the most impressive advances among all scientific disciplines. This happened mainly because of astonishing progress in the precision and accuracy of astronomical and cosmological observations ...
The upper atmosphere consists of the outermost layers of Earth's atmosphere, above about 90 km altitude, on the edge of space. It is a very different place to the atmosphere we live in at ground level; temperatures reach extremes of cold (< 200 K) and ext...
Quantum information combines information science with quantum effects in physics to study of how to process and transmit information using quantum systems. This includes quantum computation, quantum teleportation and quantum cryptography. Quantum metrol...
While coherence phenomena have long been familiar in the context of light waves, their manifestation in the context of matter waves is an exciting development of modern quantum science. This course aims to introduce the basic concepts needed to understand...
Learning and assessment
The learning activities for this course include the following:
- lectures
- classes and tutorials
- coursework
- individual and group projects
- independent learning (studying on your own)
Course time
How you'll spend your course time:
Year 1
Study time
Your scheduled learning, teaching and independent study for year 1:
How we'll assess you
- coursework, laboratory reports and essays
- design and problem-solving exercises
- individual and group projects
- oral presentations
- written and practical exams
Your assessment breakdown
Year 1:
Year 2
Study time
Your scheduled learning, teaching and independent study for year 2:
How we'll assess you
- coursework, laboratory reports and essays
- design and problem-solving exercises
- individual and group projects
- oral presentations
- written and practical exams
Your assessment breakdown
Year 2:
Year 3
Study time
Your scheduled learning, teaching and independent study for year 3:
How we'll assess you
- coursework, laboratory reports and essays
- design and problem-solving exercises
- individual and group projects
- oral presentations
- written and practical exams
Your assessment breakdown
Year 3:
Year 4
Study time
Your scheduled learning, teaching and independent study for year 4:
How we'll assess you
- coursework, laboratory reports and essays
- design and problem-solving exercises
- individual and group projects
- oral presentations
- written and practical exams
Your assessment breakdown
Year 4:
Academic support
You’ll be supported by a personal academic tutor and have access to a senior tutor.
Course leader
Robert Fear is the course leader.
Careers
Space science career jobs are in high demand. The global space economy is expanding, the government is planning to increase the UK’s share of the space market, and there’s a proliferation of new commercial space ventures.
In addition, the importance of monitoring space weather is increasingly recognised - severe space weather is now listed as one of the highest priority natural hazards in the UK National Risk Register.
The UK space sector has trebled in size in the last decade and the global space economy is set to double to £400 billion by 2030, so this is a dynamic and growing sector of the economy.
You’ll be able to apply your knowledge in a growing number of fields, including space-based scientific research, telecommunications and satellite imaging. Or you could choose to go on to further study at PhD level - a path followed by around a third of our physics and astronomy graduates.
A physics degree also opens up a huge range of other career options. Types of roles include:
-
astrophysicist
-
air traffic controller
-
science policy officer
-
medical physicist
-
satellite engineer
-
systems analyst
If you decide on a career outside physics, you’ll be able to demonstrate transferable skills such as computation and coding, statistical analysis, communication and project management skills.
We work hard to help you get the career of your choice and make the process easier and more enjoyable.
During year 2 you’ll have access to a programme of physics-focused career sessions, timetabled to fit in with your studies. These include application and interview workshops and talks from visiting professionals.
Careers services at Southampton
We are a top 20 UK university for employability (QS Graduate Employability Rankings 2019). Our Careers and Employability Service will support you throughout your time as a student and for up to 5 years after graduation. This support includes:
work experience schemes
CV and interview skills and workshops
networking events
careers fairs attended by top employers
a wealth of volunteering opportunities
study abroad and summer school opportunities
We have a vibrant entrepreneurship culture and our dedicated start-up supporter, Futureworlds, is open to every student.
Work in industry
We can help you find a paid summer placement to give you valuable hands-on experience and the chance to make industry contacts.
Fees, costs and funding
Tuition fees
Fees for a year's study:
- UK students pay £9,250.
- EU and international students pay £23,720.
What your fees pay for
Your tuition fees pay for the full cost of tuition and all examinations.
Find out how to:
Accommodation and living costs, such as travel and food, are not included in your tuition fees. Explore:
Bursaries, scholarships and other funding
If you're a UK or EU student and your household income is under £25,000 a year, you may be able to get a University of Southampton bursary to help with your living costs. Find out about bursaries and other funding we offer at Southampton.
If you're a care leaver or estranged from your parents, you may be able to get a specific bursary.
Get in touch for advice about student money matters.
Scholarships and grants
You may be able to get a scholarship or grant that's linked to your chosen subject area.
We award scholarships and grants for travel, academic excellence, or to students from underrepresented backgrounds.
Support during your course
The Student Services Centre offers support and advice on money to students. You may be able to access our Student Support fund and other sources of financial support during your course.
Funding for EU and international students
Find out about funding you could get as an international student.
How to apply
When you apply use:
- UCAS course code: F3FX
- UCAS institution code: S27
What happens after you apply?
We will assess your application on the strength of your:
- predicted grades
- academic achievements
- personal statement
- academic reference
If you’re successful, we’ll invite you to an optional applicant visit day. This will give the opportunity to learn more about the department and take an interview, which may lead to a lower offer. If you attend a visit day before Christmas, you can take the physics academic scholarship exam.
We'll aim to process your application within two to six weeks, but this will depend on when it is submitted. Applications submitted in January, particularly near to the UCAS equal consideration deadline, might take substantially longer to be processed due to the high volume received at that time.
Equality and diversity
We treat and select everyone in line with our Equality and Diversity Statement.
Got a question?
Please contact our enquiries team if you're not sure that you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Related courses
-
Courses
- Undergraduate
- Postgraduate taught
-
Postgraduate research
- Combining embedded sensor technology and machine learning to quantify swimmers’ performance in a normal training environment
- Design and manufacturing of mechanical metamaterial
- Development and manufacturability of metamaterials for cavity noise suppression
- Improving Subsea Navigation Using Environment Observations For Long Term Autonomy
- Measuring the quality of regional and national consumer price indices
- Multimode fibre lasers
- Next generation miniaturised optical sources
- Shaping light at the nanoscale with dielectric nanoantennas
- Foundation Years
- Pre-sessional English language courses
- Exchanges
- Customise your degree
- Tuition fees
- Funding your studies
- How to apply
- Clearing
- Free online learning
- Continuing professional development
-
Student life
- Accommodation
- Our campuses
- Our cities
- Student community
- Sports and gyms
- Support and money
- Halls Filter
- Research
- Business
- Global
- Open days and visits
- Clearing
- Schools and colleges
- About
- Visit
- Alumni
- Departments
- News
- Events
- Contact