WWW2009 EPrints

Predicting Click Through Rate for Job Listings

This item is a Poster.

Published Version

[img]
Preview
PDF (4Mb)

Abstract

Click Through Rate (CTR) is an important metric for ad systems, job portals, recommendation systems. CTR impacts publisher’s revenue, advertiser’s bid amounts in “pay for performance” business models. We learn regression models using features of the job, optional click history of job, features of “related” jobs. We show that our models predict CTR much better than predicting avg. CTR for all job listings, even in absence of the click history for the job listing.

Export Record As...

About this site

This website has been set up for WWW2009 by Christopher Gutteridge of the University of Southampton, using our EPrints software.

Preservation

We (Southampton EPrints Project) intend to preserve the files and HTML pages of this site for many years, however we will turn it into flat files for long term preservation. This means that at some point in the months after the conference the search, metadata-export, JSON interface, OAI etc. will be disabled as we "fossilize" the site. Please plan accordingly. Feel free to ask nicely for us to keep the dynamic site online longer if there's a rally good (or cool) use for it... [this has now happened, this site is now static]