WWW2009 EPrints

StatSnowball: a Statistical Approach to Extracting Entity Relationships

This item is a Paper in the Data Mining track.

Published Version

PDF (833Kb)


Traditional relation extraction methods require pre-specified relations and relation-specific human-tagged examples. Boot- strapping systems significantly reduce the number of train- ing examples, but they usually apply heuristic-based meth- ods to combine a set of strict hard rules, which limit the ability to generalize and thus generate a low recall. Further- more, existing bootstrapping methods do not perform open information extraction (Open IE), which can identify var- ious types of relations without requiring pre-specifications. In this paper, we propose a statistical extraction framework called Statistical Snowball (StatSnowball), which is a boot- strapping system and can perform both traditional relation extraction and Open IE. StatSnowball uses the discriminative Markov logic net- works (MLNs) and softens hard rules by learning their weights in a maximum likelihood estimate sense. MLN is a general model, and can be configured to perform different levels of relation extraction. In StatSnwoball, pattern selection is performed by solving an l1 -norm penalized maximum like- lihood estimation, which enjoys well-founded theories and efficient solvers. We extensively evaluate the performance of StatSnowball in different configurations on both a small but fully labeled data set and large-scale Web data. Empirical results show that StatSnowball can achieve a significantly higher recall without sacrificing the high precision during it- erations with a small number of seeds, and the joint inference of MLN can improve the performance. Finally, StatSnowball is efficient and we have developed a working entity relation search engine called Renlifang based on it.

Export Record As...

About this site

This website has been set up for WWW2009 by Christopher Gutteridge of the University of Southampton, using our EPrints software.


We (Southampton EPrints Project) intend to preserve the files and HTML pages of this site for many years, however we will turn it into flat files for long term preservation. This means that at some point in the months after the conference the search, metadata-export, JSON interface, OAI etc. will be disabled as we "fossilize" the site. Please plan accordingly. Feel free to ask nicely for us to keep the dynamic site online longer if there's a rally good (or cool) use for it... [this has now happened, this site is now static]