Number of items: 2.
Yang, Jiang-Ming and
Cai, Rui and
Wang, Yida and
Zhu, Jun and
Zhang, Lei and
Ma, Wei-Ying Incorporating Site-Level Knowledge to Extract Structured Data from Web Forums. Web forums have become an important data resource for many web applications, but extracting structured data from unstructured web forum pages is still a challenging task due to both complex page layout designs and unrestricted user created posts. In this paper, we study the problem of structured data extraction from various web forum sites. Our target is to find a solution as general as possible to extract structured data, such as post title, post author, post time, and post content from any forum site. In contrast to most existing information extraction methods, which only leverage the knowledge inside an individual page, we incorporate both page-level and site-level knowledge and employ Markov logic networks (MLNs) to effectively integrate all useful evidence by learning their importance automatically. Site-level knowledge includes (1) the linkages among different object pages, such as list pages and post pages, and (2) the interrelationships of pages belonging to the same object. The experimental results on 20 forums show a very encouraging information extraction performance, and demonstrate the ability of the proposed approach on various forums. We also show that the performance is limited if only page-level knowledge is used, while when incorporating the site-level knowledge both precision and recall can be significantly improved.
Zhu, Jun and
Nie, Zaiqing and
Liu, Xiaojiang and
Zhang, Bo and
Wen, Ji-Rong StatSnowball: a Statistical Approach to Extracting Entity Relationships. Traditional relation extraction methods require pre-specified relations and relation-specific human-tagged examples. Boot- strapping systems significantly reduce the number of train- ing examples, but they usually apply heuristic-based meth- ods to combine a set of strict hard rules, which limit the ability to generalize and thus generate a low recall. Further- more, existing bootstrapping methods do not perform open information extraction (Open IE), which can identify var- ious types of relations without requiring pre-specifications. In this paper, we propose a statistical extraction framework called Statistical Snowball (StatSnowball), which is a boot- strapping system and can perform both traditional relation extraction and Open IE. StatSnowball uses the discriminative Markov logic net- works (MLNs) and softens hard rules by learning their weights in a maximum likelihood estimate sense. MLN is a general model, and can be configured to perform different levels of relation extraction. In StatSnwoball, pattern selection is performed by solving an l1 -norm penalized maximum like- lihood estimation, which enjoys well-founded theories and efficient solvers. We extensively evaluate the performance of StatSnowball in different configurations on both a small but fully labeled data set and large-scale Web data. Empirical results show that StatSnowball can achieve a significantly higher recall without sacrificing the high precision during it- erations with a small number of seeds, and the joint inference of MLN can improve the performance. Finally, StatSnowball is efficient and we have developed a working entity relation search engine called Renlifang based on it.
This list was generated on Fri Feb 15 08:41:44 2019 GMT.
About this site
This website has been set up for WWW2009 by Christopher Gutteridge of the University of Southampton, using our EPrints software.
Preservation
We (Southampton EPrints Project) intend to preserve the files and HTML pages of this site for many years, however we will turn it into flat files for long term preservation. This means that at some point in the months after the conference the search, metadata-export, JSON interface, OAI etc. will be disabled as we "fossilize" the site. Please plan accordingly. Feel free to ask nicely for us to keep the dynamic site online longer if there's a rally good (or cool) use for it... [this has now happened, this site is now static]