Items by Zhang, Lei
Number of items: 4. Wang, Haofen and Liu, Qiaoling and Xue, Gui-Rong and Yu, Yong and Zhang, Lei and Pan, Yue Dataplorer: A Scalable Search Engine for the Data Web.
More and more structured information in the form of semantic data is nowadays available. It offers a wide range of new possibilities especially for semantic search and Web data integration. However, their effective exploitation still brings about a number of challenges, e.g. usability, scalability and uncertainty. In this paper, we present Dataplorer, a solution designed to address these challenges. We consider the usability through the use of hybrid queries and faceted search, while still preserving the scalability thanks to an extension of inverted index to support this type of query. Moreover, Dataplorer deals with uncertainty by means of a powerful ranking scheme to find relevant results. Our experimental results show that our proposed approach is promising and it makes us believe that it is possible to extend the current IR infrastructure to query and search the Web of data. Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval General Terms: Algorithms, Performance, Experimentation Keywords: hybrid query, inverted index, ranking, faceted search sake of the others. The usability challenge is addressed by providing the user with hybrid query capabilities, leveraging the power of structured queries and the ease of use of keyword search. We also propose a faceted search functionality that allows users to progressively compose the structured part of their information need after having started with imprecise keywords. Scalability is one of the main challenges that hybrid queries are facing, due to the large amount of data. Inspired from the cross field of DB and IR integration, we make IR compatible with hybrid search through an extension of the inverted index, and thus able to scale as well as to handle structured information. To ensure that uncertainty does not remain as a problem to return relevant results, we provide a powerful ranking scheme that considers structures of both data and hybrid queries for score propagation and aggregation during results ranking. As an improvement of our previous work [3], we support faceted search with integrated ranking to tackle both usability and uncertainty issues while preserving efficiency. Yang, Jiang-Ming and Cai, Rui and Wang, Yida and Zhu, Jun and Zhang, Lei and Ma, Wei-Ying Incorporating Site-Level Knowledge to Extract Structured Data from Web Forums.
Web forums have become an important data resource for many web applications, but extracting structured data from unstructured web forum pages is still a challenging task due to both complex page layout designs and unrestricted user created posts. In this paper, we study the problem of structured data extraction from various web forum sites. Our target is to find a solution as general as possible to extract structured data, such as post title, post author, post time, and post content from any forum site. In contrast to most existing information extraction methods, which only leverage the knowledge inside an individual page, we incorporate both page-level and site-level knowledge and employ Markov logic networks (MLNs) to effectively integrate all useful evidence by learning their importance automatically. Site-level knowledge includes (1) the linkages among different object pages, such as list pages and post pages, and (2) the interrelationships of pages belonging to the same object. The experimental results on 20 forums show a very encouraging information extraction performance, and demonstrate the ability of the proposed approach on various forums. We also show that the performance is limited if only page-level knowledge is used, while when incorporating the site-level knowledge both precision and recall can be significantly improved. Lin, Chen and Yang, Jiang-Ming and Cai, Rui and Wang, Xin-Jing and Wang, Wei and Zhang, Lei Modeling Semantics and Structure of Discussion Threads.
The abundant knowledge in web communities has motivated the research interests in discussion threads. The dynamic nature of discussion threads poses interesting and challenging problems for computer scientists. Although techniques such as semantic models or structural models have been shown to be useful in a number of areas, they are inefficient in understanding discussion threads due to the temporal dependence among posts in a discussion thread. Such dependence causes that semantics and structure coupled with each other in discussion threads. In this paper, we propose a sparse coding-based model named SMSS to Simultaneously Model Semantic and Structure of discussion threads. Tu, Xudong and Wang, Xin-Jing and Feng, Dan and Zhang, Lei Ranking Community Answers via Analogical Reasoning.
Due to the lexical gap between questions and answers, automatically detecting right answers becomes very challenging for community question-answering sites. In this paper, we propose an analogical reasoning-based method. It treats questions and answers as relational data and ranks an answer by measuring the analogy of its link to a query with the links embedded in previous relevant knowledge; the answer that links in the most analogous way to the new question is assumed to be the best answer. We based our experiments on 29.8 million Yahoo!Answer questionanswer threads and showed the effectiveness of the approach. This list was generated on Fri Feb 15 08:41:45 2019 GMT. About this siteThis website has been set up for WWW2009 by Christopher Gutteridge of the University of Southampton, using our EPrints software. PreservationWe (Southampton EPrints Project) intend to preserve the files and HTML pages of this site for many years, however we will turn it into flat files for long term preservation. This means that at some point in the months after the conference the search, metadata-export, JSON interface, OAI etc. will be disabled as we "fossilize" the site. Please plan accordingly. Feel free to ask nicely for us to keep the dynamic site online longer if there's a rally good (or cool) use for it... [this has now happened, this site is now static] |