Items by Xue, Gui-Rong
Number of items: 3. Wang, Haofen and Liu, Qiaoling and Xue, Gui-Rong and Yu, Yong and Zhang, Lei and Pan, Yue Dataplorer: A Scalable Search Engine for the Data Web.
More and more structured information in the form of semantic data is nowadays available. It offers a wide range of new possibilities especially for semantic search and Web data integration. However, their effective exploitation still brings about a number of challenges, e.g. usability, scalability and uncertainty. In this paper, we present Dataplorer, a solution designed to address these challenges. We consider the usability through the use of hybrid queries and faceted search, while still preserving the scalability thanks to an extension of inverted index to support this type of query. Moreover, Dataplorer deals with uncertainty by means of a powerful ranking scheme to find relevant results. Our experimental results show that our proposed approach is promising and it makes us believe that it is possible to extend the current IR infrastructure to query and search the Web of data. Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval General Terms: Algorithms, Performance, Experimentation Keywords: hybrid query, inverted index, ranking, faceted search sake of the others. The usability challenge is addressed by providing the user with hybrid query capabilities, leveraging the power of structured queries and the ease of use of keyword search. We also propose a faceted search functionality that allows users to progressively compose the structured part of their information need after having started with imprecise keywords. Scalability is one of the main challenges that hybrid queries are facing, due to the large amount of data. Inspired from the cross field of DB and IR integration, we make IR compatible with hybrid search through an extension of the inverted index, and thus able to scale as well as to handle structured information. To ensure that uncertainty does not remain as a problem to return relevant results, we provide a powerful ranking scheme that considers structures of both data and hybrid queries for score propagation and aggregation during results ranking. As an improvement of our previous work [3], we support faceted search with integrated ranking to tackle both usability and uncertainty issues while preserving efficiency. Li, Liangda and Zhou, Ke and Xue, Gui-Rong and Zha, Hongyuan and Yu, Yong Enhancing Diversity, Coverage and Balance for Summarization through Structure Learning.
Document summarization plays an increasingly important role with the exponential growth of documents on the Web. Many supervised and unsupervised approaches have been proposed to generate summaries from documents. However, these approaches seldom simultaneously consider summary diversity, coverage, and balance issues which to a large extent determine the quality of summaries. In this paper, we consider extract-based summarization emphasizing the following three requirements: 1) diversity in summarization, which seeks to reduce redundancy among sentences in the summary; 2) sufficient coverage, which focuses on avoiding the loss of the document’s main information when generating the summary; and 3) balance, which demands that different aspects of the document need to have about the same relative importance in the summary. We formulate the extract-based summarization problem as learning a mapping from a set of sentences of a given document to a subset of the sentences that satisfies the above three requirements. The mapping is learned by incorporating several constraints in a structure learning framework, and we explore the graph structure of the output variables and employ structural SVM for solving the resulted optimization problem. Experiments on the DUC2001 data sets demonstrate significant performance improvements in terms of F1 and ROUGE metrics. Zhang, Congle and Xue, Gui-Rong and Yu, Yong and Zha, Hongyuan Web-Scale Classification with Naive Bayes.
Traditional Naive Bayes Classifier performs miserably on web-scale taxonomies. In this paper, we investigate the reasons behind such bad performance. We discover that the low performance are not completely caused by the intrinsic limitations of Naive Bayes, but mainly comes from two largely ignored problems: contradiction pair problem and discriminative evidence cancelation problem. We propose modifications that can alleviate the two problems while preserving the advantages of Naive Bayes. The experimental results show our modified Naive Bayes can significantly improve the performance on real web-scale taxonomies. This list was generated on Fri Feb 15 08:41:26 2019 GMT. About this siteThis website has been set up for WWW2009 by Christopher Gutteridge of the University of Southampton, using our EPrints software. PreservationWe (Southampton EPrints Project) intend to preserve the files and HTML pages of this site for many years, however we will turn it into flat files for long term preservation. This means that at some point in the months after the conference the search, metadata-export, JSON interface, OAI etc. will be disabled as we "fossilize" the site. Please plan accordingly. Feel free to ask nicely for us to keep the dynamic site online longer if there's a rally good (or cool) use for it... [this has now happened, this site is now static] |