WWW2009 EPrints

Buzz-Based Recommender System

This item is a Poster.

Published Version

[img]
Preview
PDF (675Kb)

Abstract

In this paper, we describe a buzz-based recommender system based on a large source of queries in an eCommerce application. The system detects bursts in query trends. These bursts are linked to external entities like news and inventory information to find the queries currently in-demand which we refer to as buzz queries. The system follows the paradigm of limited quantity merchandising, in the sense that on a per-day basis the system shows recommendations around a single buzz query with the intent of increasing user curiosity, and improving activity and stickiness on the site. A semantic neighborhood of the chosen buzz query is selected and appropriate recommendations are made on products that relate to this neighborhood.

Export Record As...

About this site

This website has been set up for WWW2009 by Christopher Gutteridge of the University of Southampton, using our EPrints software.

Preservation

We (Southampton EPrints Project) intend to preserve the files and HTML pages of this site for many years, however we will turn it into flat files for long term preservation. This means that at some point in the months after the conference the search, metadata-export, JSON interface, OAI etc. will be disabled as we "fossilize" the site. Please plan accordingly. Feel free to ask nicely for us to keep the dynamic site online longer if there's a rally good (or cool) use for it... [this has now happened, this site is now static]