Number of items: 3.
Parikh, Nish and
Sundaresan, Neel Buzz-Based Recommender System. In this paper, we describe a buzz-based recommender system based on a large source of queries in an eCommerce application. The system detects bursts in query trends. These bursts are linked to external entities like news and inventory information to find the queries currently in-demand which we refer to as buzz queries. The system follows the paradigm of limited quantity merchandising, in the sense that on a per-day basis the system shows recommendations around a single buzz query with the intent of increasing user curiosity, and improving activity and stickiness on the site. A semantic neighborhood of the chosen buzz query is selected and appropriate recommendations are made on products that relate to this neighborhood.
Shen, Dan and
Wu, Xiaoyuan and
Bolivar, Alvaro Rare Item Detection in e-Commerce Site. As the largest online marketplace in the world, eBay has a huge inventory where there are plenty of great rare items with potentially large, even rapturous buyers. These items are obscured in long tail of eBay item listing and hard to find through existing searching or browsing methods. It is observed that there are great rarity demands from users according to eBay query log. To keep up with the demands, the paper proposes a method to automatically detect rare items in eBay online listing. A large set of features relevant to the task are investigated to filter items and further measure item rareness. The experiments on the most rarity-demandintensitive domains show that the method may effectively detect rare items (> 90% precision).
Lu, Yue and
Zhai, ChengXiang and
Sundaresan, Neel Rated Aspect Summarization of Short Comments. Web 2.0 technologies have enabled more and more people to freely comment on different kinds of entities (e.g. sellers, products, services). The large scale of information poses the need and challenge of automatic summarization. In many cases, each of the user-generated short comments comes with an overall rating. In this paper, we study the problem of generating a “rated aspect summary” of short comments, which is a decomposed view of the overall ratings for the major aspects so that a user could gain different perspectives towards the target entity. We formally define the problem and decompose the solution into three steps. We demonstrate the effectiveness of our methods by using eBay sellers’ feedback comments. We also quantitatively evaluate each step of our methods and study how well human agree on such a summarization task. The proposed methods are quite general and can be used to generate rated aspect summary automatically given any collection of short comments each associated with an overall rating.
This list was generated on Fri Feb 15 09:01:06 2019 GMT.
About this site
This website has been set up for WWW2009 by Christopher Gutteridge of the University of Southampton, using our EPrints software.
Preservation
We (Southampton EPrints Project) intend to preserve the files and HTML pages of this site for many years, however we will turn it into flat files for long term preservation. This means that at some point in the months after the conference the search, metadata-export, JSON interface, OAI etc. will be disabled as we "fossilize" the site. Please plan accordingly. Feel free to ask nicely for us to keep the dynamic site online longer if there's a rally good (or cool) use for it... [this has now happened, this site is now static]