This item is a Paper in the Data Mining track.
Abstract
The explosion of online content has made the management of such content non-trivial. Web-related tasks such as web page categorization, news filtering, query categorization, tag recommendation, etc. often involve the construction of multilabel categorization systems on a large scale. Existing multilabel classification methods either do not scale or have unsatisfactory performance. In this work, we propose MetaLabeler to automatically determine the relevant set of labels for each instance without intensive human involvement or expensive cross-validation. Extensive experiments conducted on benchmark data show that the MetaLabeler tends to outperform existing methods. Moreover, MetaLabeler scales to millions of multi-labeled instances and can be deployed easily. This enables us to apply the MetaLabeler to a large scale query categorization problem in Yahoo!, yielding a significant improvement in performance.
Export Record As...
- HTML Citation
- ASCII Citation
- Resource Map
- OpenURL ContextObject
- EndNote
- BibTeX
- OpenURL ContextObject in Span
- MODS
- DIDL
- EP3 XML
- JSON
- Dublin Core
- Reference Manager
- Eprints Application Profile
- Simple Metadata
- Refer
- METS