WWW2009 EPrints

Spatio-Temporal Models for Estimating Click-through Rate

This item is a Paper in the Data Mining track.

Published Version

[img]
Preview
PDF (2303Kb)

Abstract

We propose novel spatio-temporal models to estimate clickthrough rates in the context of content recommendation. We track article CTR at a fixed location over time through a dynamic Gamma-Poisson model and combine information from correlated locations through dynamic linear regressions, significantly improving on per-location model. Our models adjust for user fatigue through an exponential tilt to the firstview CTR (probability of click on first article exposure) that is based only on user-specific repeat-exposure features. We illustrate our approach on data obtained from a module (Today Module) published regularly on Yahoo! Front Page and demonstrate significant improvement over commonly used baseline methods. Large scale simulation experiments to study the performance of our models under different scenarios provide encouraging results. Throughout, all modeling assumptions are validated via rigorous exploratory data analysis.

Export Record As...

About this site

This website has been set up for WWW2009 by Christopher Gutteridge of the University of Southampton, using our EPrints software.

Preservation

We (Southampton EPrints Project) intend to preserve the files and HTML pages of this site for many years, however we will turn it into flat files for long term preservation. This means that at some point in the months after the conference the search, metadata-export, JSON interface, OAI etc. will be disabled as we "fossilize" the site. Please plan accordingly. Feel free to ask nicely for us to keep the dynamic site online longer if there's a rally good (or cool) use for it... [this has now happened, this site is now static]