Number of items: 1.
Bollegala, Danushka and
Matsuo, Yutaka and
Ishizuka, Mitsuru Measuring the Similarity between Implicit Semantic Relations from the Web. Measuring the similarity between semantic relations that hold among entities is an important and necessary step in various Web related tasks such as relation extraction, information retrieval and analogy detection. For example, consider the case in which a person knows a pair of entities (e.g. Google, YouTube), between which a partic- ular relation holds (e.g. acquisition). The person is interested in retrieving other such pairs with similar relations (e.g. Microsoft, Powerset). Existing keyword-based search engines cannot be ap- plied directly in this case because, in keyword-based search, the goal is to retrieve documents that are relevant to the words used in a query – not necessarily to the relations implied by a pair of words. We propose a relational similarity measure, using a Web search en- gine, to compute the similarity between semantic relations implied by two pairs of words. Our method has three components: repre- senting the various semantic relations that exist between a pair of words using automatically extracted lexical patterns, clustering the extracted lexical patterns to identify the different patterns that ex- press a particular semantic relation, and measuring the similarity between semantic relations using a metric learning approach. We evaluate the proposed method in two tasks: classifying semantic relations between named entities, and solving word-analogy ques- tions. The proposed method outperforms all baselines in a relation classification task with a statistically significant average precision score of 0.74. Moreover, it reduces the time taken by Latent Relational Analysis to process 374 word-analogy questions from 9 days to less than 6 hours, with an SAT score of 51%.
This list was generated on Fri Feb 15 08:47:43 2019 GMT.
About this site
This website has been set up for WWW2009 by Christopher Gutteridge of the University of Southampton, using our EPrints software.
Preservation
We (Southampton EPrints Project) intend to preserve the files and HTML pages of this site for many years, however we will turn it into flat files for long term preservation. This means that at some point in the months after the conference the search, metadata-export, JSON interface, OAI etc. will be disabled as we "fossilize" the site. Please plan accordingly. Feel free to ask nicely for us to keep the dynamic site online longer if there's a rally good (or cool) use for it... [this has now happened, this site is now static]